236 lines
10 KiB
Python
236 lines
10 KiB
Python
"Specifically for scraping job postings from Amazon Jobs."
|
||
import asyncio
|
||
import random
|
||
import re
|
||
from typing import Optional, Dict
|
||
from playwright.async_api import async_playwright, TimeoutError as PlaywrightTimeoutError
|
||
from browserforge.injectors.playwright import AsyncNewContext
|
||
from llm_agent import LLMJobRefiner
|
||
from fetcher import StealthyFetcher
|
||
from datetime import datetime
|
||
|
||
|
||
class AmazonJobScraper:
|
||
def __init__(
|
||
self,
|
||
engine,
|
||
db_path: str = "amazon_jobs.db",
|
||
human_speed: float = 1.0,
|
||
user_request: str = "Extract all standard job details"
|
||
):
|
||
self.engine = engine
|
||
self.db_path = db_path
|
||
self.human_speed = human_speed
|
||
self.user_request = user_request
|
||
self.llm_agent = LLMJobRefiner()
|
||
|
||
async def _human_click(self, page, element, wait_after: bool = True):
|
||
if not element:
|
||
return False
|
||
await element.scroll_into_view_if_needed()
|
||
await asyncio.sleep(random.uniform(0.3, 0.8) * self.human_speed)
|
||
try:
|
||
await element.click()
|
||
if wait_after:
|
||
await asyncio.sleep(random.uniform(1.0, 2.0) * self.human_speed)
|
||
return True
|
||
except:
|
||
return False
|
||
|
||
def _extract_location_from_keywords(self, search_keywords: str) -> str:
|
||
location_match = re.search(r'location:\s*([^,]+)', search_keywords, re.IGNORECASE)
|
||
return location_match.group(1).strip() if location_match else ""
|
||
|
||
def _build_amazon_search_url(self, keywords: str) -> str:
|
||
clean_keywords = re.sub(r'location:\s*[^,]+', '', keywords, flags=re.IGNORECASE).strip()
|
||
location = self._extract_location_from_keywords(keywords)
|
||
|
||
base_url = "https://www.amazon.jobs/en/search?"
|
||
params = []
|
||
|
||
if clean_keywords:
|
||
params.append(f"base_query={clean_keywords.replace(' ', '+')}")
|
||
if location:
|
||
params.append(f"loc_query={location.replace(' ', '+')}")
|
||
params.append("offset=0")
|
||
params.append("result_limit=10")
|
||
|
||
return base_url + "&".join(params)
|
||
|
||
async def _extract_page_content_for_llm(self, page) -> str:
|
||
await asyncio.sleep(2 * self.human_speed)
|
||
await self.engine._human_like_scroll(page)
|
||
await asyncio.sleep(2 * self.human_speed)
|
||
return await page.content()
|
||
|
||
async def _scrape_job_links_from_page(self, page, seen_job_ids, all_job_links):
|
||
job_cards = await page.query_selector_all('div.job-tile a[href^="/en/jobs/"]')
|
||
new_jobs = 0
|
||
for card in job_cards:
|
||
href = await card.get_attribute("href")
|
||
if not href:
|
||
continue
|
||
full_url = f"https://www.amazon.jobs{href}" if href.startswith("/") else href
|
||
job_id = href.split("/")[-1] if href.split("/")[-1] else "unknown"
|
||
|
||
if job_id in seen_job_ids:
|
||
continue
|
||
|
||
title_element = await card.query_selector('h3')
|
||
title = await title_element.inner_text() if title_element else "Unknown Title"
|
||
|
||
seen_job_ids.add(job_id)
|
||
all_job_links.append((full_url, title))
|
||
new_jobs += 1
|
||
|
||
return new_jobs
|
||
|
||
async def _scroll_and_collect_jobs(self, page, seen_job_ids, all_job_links, max_pages=5):
|
||
offset = 0
|
||
jobs_per_page = 10
|
||
for page_num in range(max_pages):
|
||
print(f"📄 Fetching Amazon job page {page_num + 1} (offset: {offset})")
|
||
current_url = page.url
|
||
if "offset=" in current_url:
|
||
base_url = current_url.split("offset=")[0]
|
||
new_url = base_url + f"offset={offset}&result_limit={jobs_per_page}"
|
||
else:
|
||
new_url = current_url + f"&offset={offset}&result_limit={jobs_per_page}"
|
||
|
||
await page.goto(new_url, wait_until='domcontentloaded', timeout=120000)
|
||
await asyncio.sleep(random.uniform(3.0, 5.0) * self.human_speed)
|
||
|
||
new_jobs = await self._scrape_job_links_from_page(page, seen_job_ids, all_job_links)
|
||
print(f" ➕ Found {new_jobs} new job(s) on page {page_num + 1} (total: {len(all_job_links)})")
|
||
|
||
if new_jobs == 0 and page_num > 0:
|
||
print("🔚 No new jobs — stopping pagination.")
|
||
break
|
||
|
||
offset += jobs_per_page
|
||
|
||
async def scrape_jobs(
|
||
self,
|
||
search_keywords: Optional[str],
|
||
max_pages: int = 5,
|
||
credentials: Optional[Dict] = None # Not used for Amazon
|
||
):
|
||
search_url = self._build_amazon_search_url(search_keywords)
|
||
print(f"🔍 Amazon search URL: {search_url}")
|
||
|
||
profile = self.engine._select_profile()
|
||
renderer = random.choice(self.engine.common_renderers[self.engine.os])
|
||
vendor = random.choice(self.engine.common_vendors)
|
||
spoof_script = self.engine._get_spoof_script(renderer, vendor)
|
||
|
||
async with async_playwright() as pw:
|
||
browser = await pw.chromium.launch(
|
||
headless=False,
|
||
args=['--disable-blink-features=AutomationControlled']
|
||
)
|
||
context = await AsyncNewContext(browser, fingerprint=profile)
|
||
|
||
await context.add_init_script(f"""
|
||
Object.defineProperty(navigator, 'hardwareConcurrency', {{ get: () => {profile.navigator.hardwareConcurrency} }});
|
||
Object.defineProperty(navigator, 'deviceMemory', {{ get: () => {profile.navigator.deviceMemory} }});
|
||
Object.defineProperty(navigator, 'platform', {{ get: () => '{profile.navigator.platform}' }});
|
||
""")
|
||
await context.add_init_script(spoof_script)
|
||
|
||
page = await context.new_page()
|
||
temp_fetcher = StealthyFetcher(self.engine, browser, context)
|
||
|
||
# Amazon doesn't require login
|
||
print("🌐 Navigating to Amazon Jobs (no login required)...")
|
||
await page.goto(search_url, wait_until='domcontentloaded', timeout=120000)
|
||
await asyncio.sleep(random.uniform(3.0, 5.0) * self.human_speed)
|
||
|
||
# Protection check
|
||
protection_type = await temp_fetcher._detect_protection(page)
|
||
if protection_type:
|
||
print(f"🛡️ Protection detected: {protection_type}")
|
||
content_accessible = await temp_fetcher._is_content_accessible(page)
|
||
if not content_accessible:
|
||
handled = await self.engine._handle_cloudflare(page) if protection_type == "cloudflare" else False
|
||
if not handled:
|
||
await browser.close()
|
||
self.engine.report_outcome("protection_block")
|
||
return
|
||
else:
|
||
print("✅ Protection present but content accessible.")
|
||
|
||
all_job_links = []
|
||
seen_job_ids = set()
|
||
|
||
print("🔄 Collecting job links via pagination...")
|
||
await self._scroll_and_collect_jobs(page, seen_job_ids, all_job_links, max_pages=max_pages)
|
||
|
||
print(f"✅ Collected {len(all_job_links)} unique Amazon job links.")
|
||
|
||
scraped_count = 0
|
||
for idx, (job_url, title) in enumerate(all_job_links):
|
||
try:
|
||
print(f" → Opening job {idx+1}/{len(all_job_links)}: {job_url}")
|
||
fetcher = StealthyFetcher(self.engine, browser, context)
|
||
job_page = await fetcher.fetch_url(job_url, wait_for_selector="h1.job-title")
|
||
|
||
if not job_page:
|
||
print(f" ❌ Failed to fetch job page: {job_url}")
|
||
self.engine.report_outcome("fetch_failure", url=job_url)
|
||
continue
|
||
|
||
# Extract raw HTML for LLM
|
||
await self.engine._human_like_scroll(job_page)
|
||
await asyncio.sleep(2 * self.human_speed)
|
||
page_content = await self._extract_page_content_for_llm(job_page)
|
||
|
||
job_id = job_url.split("/")[-1] if job_url.split("/")[-1] else "unknown"
|
||
|
||
raw_data = {
|
||
"page_content": page_content,
|
||
"url": job_url,
|
||
"job_id": job_id,
|
||
"search_keywords": search_keywords
|
||
}
|
||
|
||
refined_data = await self.llm_agent.refine_job_data(raw_data, self.user_request)
|
||
|
||
if refined_data and refined_data.get("title", "N/A") != "N/A":
|
||
# Ensure compulsory fields
|
||
compulsory_fields = ['company_name', 'job_id', 'url']
|
||
for field in compulsory_fields:
|
||
if not refined_data.get(field) or refined_data[field] in ["N/A", "", "Unknown"]:
|
||
if field == 'job_id':
|
||
refined_data[field] = job_id
|
||
elif field == 'url':
|
||
refined_data[field] = job_url
|
||
elif field == 'company_name':
|
||
refined_data[field] = "Amazon"
|
||
|
||
refined_data['scraped_at'] = datetime.now().isoformat()
|
||
refined_data['category'] = re.sub(r'location:\s*[^,]+', '', search_keywords, flags=re.IGNORECASE).strip()
|
||
await self.llm_agent.save_job_data(refined_data, search_keywords)
|
||
scraped_count += 1
|
||
print(f" ✅ Scraped and refined: {refined_data['title'][:50]}...")
|
||
self.engine.report_outcome("success", url=job_url)
|
||
else:
|
||
print(f" 🟡 LLM could not extract valid data from: {job_url}")
|
||
self.engine.report_outcome("llm_failure", url=job_url)
|
||
|
||
await job_page.close()
|
||
|
||
except Exception as e:
|
||
print(f" ⚠️ Failed on job {idx+1}: {str(e)[:100]}")
|
||
if 'job_page' in locals() and job_page:
|
||
await job_page.close()
|
||
continue
|
||
|
||
await browser.close()
|
||
|
||
if scraped_count > 0:
|
||
self.engine.report_outcome("success")
|
||
print(f"✅ Completed! Processed {scraped_count} Amazon jobs for '{search_keywords}'.")
|
||
else:
|
||
self.engine.report_outcome("no_jobs")
|
||
print("⚠️ No Amazon jobs processed successfully.")
|