298 lines
12 KiB
Python
298 lines
12 KiB
Python
|
|
from openai import OpenAI
|
|
from typing import Dict, Any
|
|
import asyncio
|
|
import psycopg2
|
|
import os
|
|
from datetime import datetime
|
|
import json
|
|
import re
|
|
from bs4 import BeautifulSoup
|
|
from dotenv import load_dotenv
|
|
|
|
# Load environment variables from .env
|
|
load_dotenv()
|
|
|
|
|
|
class LLMJobRefiner:
|
|
def __init__(self):
|
|
deepseek_api_key = os.getenv("DEEPSEEK_API_KEY")
|
|
if not deepseek_api_key:
|
|
raise ValueError("DEEPSEEK_API_KEY not found in .env file.")
|
|
|
|
# Database credentials from .env
|
|
self.db_url = os.getenv("DB_URL")
|
|
self.db_username = os.getenv("DB_USERNAME")
|
|
self.db_password = os.getenv("DB_PASSWORD")
|
|
self.db_host = os.getenv("DB_HOST")
|
|
self.db_port = os.getenv("DB_PORT")
|
|
|
|
if not self.db_url or not self.db_username or not self.db_password:
|
|
raise ValueError("Database credentials not found in .env file.")
|
|
|
|
# DeepSeek uses OpenAI-compatible API
|
|
self.client = OpenAI(
|
|
api_key=deepseek_api_key,
|
|
base_url="https://api.deepseek.com/v1"
|
|
)
|
|
self.model = "deepseek-chat"
|
|
self._init_db()
|
|
|
|
def _init_db(self):
|
|
"""Initialize PostgreSQL database connection and create table"""
|
|
try:
|
|
self.db_url = os.getenv("DB_URL")
|
|
if self.db_url and "supabase.com" in self.db_url:
|
|
conn = psycopg2.connect(
|
|
host=self.db_host,
|
|
port=self.db_port,
|
|
database="postgres",
|
|
user=self.db_username,
|
|
password=self.db_password
|
|
)
|
|
else:
|
|
conn = psycopg2.connect(
|
|
host=self.db_host,
|
|
port=self.db_port,
|
|
database="postgres",
|
|
user=self.db_username,
|
|
password=self.db_password
|
|
)
|
|
cursor = conn.cursor()
|
|
|
|
cursor.execute('''
|
|
CREATE TABLE IF NOT EXISTS jobs (
|
|
id SERIAL PRIMARY KEY,
|
|
title TEXT,
|
|
company_name TEXT,
|
|
location TEXT,
|
|
description TEXT,
|
|
requirements TEXT,
|
|
qualifications TEXT,
|
|
salary_range TEXT,
|
|
nature_of_work TEXT,
|
|
job_id TEXT UNIQUE,
|
|
url TEXT,
|
|
category TEXT,
|
|
scraped_at TIMESTAMP,
|
|
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
|
)
|
|
''')
|
|
|
|
# Ensure the uniqueness constraint exists
|
|
cursor.execute('''
|
|
ALTER TABLE jobs DROP CONSTRAINT IF EXISTS jobs_job_id_key;
|
|
ALTER TABLE jobs ADD CONSTRAINT jobs_job_id_key UNIQUE (job_id);
|
|
''')
|
|
|
|
cursor.execute('CREATE INDEX IF NOT EXISTS idx_job_id ON jobs(job_id)')
|
|
cursor.execute('CREATE INDEX IF NOT EXISTS idx_category ON jobs(category)')
|
|
|
|
conn.commit()
|
|
cursor.close()
|
|
conn.close()
|
|
print("✅ PostgreSQL database initialized successfully")
|
|
except Exception as e:
|
|
print(f"❌ Database initialization error: {e}")
|
|
raise
|
|
|
|
def _clean_html_for_llm(self, html_content: str) -> str:
|
|
"""Clean HTML to make it more readable for LLM while preserving structure"""
|
|
try:
|
|
soup = BeautifulSoup(html_content, 'html.parser')
|
|
|
|
# Remove script and style elements
|
|
for script in soup(["script", "style", "nav", "footer", "header"]):
|
|
script.decompose()
|
|
|
|
# Extract text but keep some structure
|
|
text = soup.get_text(separator=' ', strip=True)
|
|
|
|
# Clean up whitespace
|
|
text = re.sub(r'\s+', ' ', text)
|
|
|
|
# Limit length for LLM context
|
|
if len(text) > 10000:
|
|
text = text[:10000] + "..."
|
|
|
|
return text
|
|
except Exception as e:
|
|
print(f"HTML cleaning error: {e}")
|
|
# Fallback to raw content if cleaning fails
|
|
return html_content[:100000] if len(html_content) > 100000 else html_content
|
|
|
|
def _generate_content_sync(self, prompt: str) -> str:
|
|
"""Synchronous call to DeepSeek API"""
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model,
|
|
messages=[{"role": "user", "content": prompt}],
|
|
temperature=0.2,
|
|
max_tokens=2048,
|
|
stream=False
|
|
)
|
|
return response.choices[0].message.content or ""
|
|
except Exception as e:
|
|
print(f"DeepSeek API error: {e}")
|
|
return ""
|
|
|
|
async def refine_job_data(self, raw_data: Dict[str, Any], target_field: str) -> Dict[str, Any]:
|
|
# Clean the raw HTML content for better LLM processing
|
|
page_content = raw_data.get('page_content', '')
|
|
cleaned_content = self._clean_html_for_llm(page_content)
|
|
|
|
# Get job_id and url from raw data
|
|
job_id = raw_data.get('job_id', 'unknown')
|
|
url = raw_data.get('url', 'N/A')
|
|
|
|
prompt = f"""
|
|
You are a job posting data extractor with two modes:
|
|
|
|
CRITICAL INSTRUCTIONS FOR TEXT FIELDS:
|
|
- description: Extract the COMPLETE job description text (all paragraphs, bullet points, everything)
|
|
- requirements: Extract the COMPLETE requirements section text if present (all details, don't summarize)
|
|
- qualifications: Extract the COMPLETE qualifications section text if present (all details, don't summarize)
|
|
- If these sections are not explicitly labeled but exist in the content, extract the relevant portions
|
|
|
|
PRIMARY MODE (PREFERRED):
|
|
- Extract EXACT text as it appears on the page for all fields
|
|
- DO NOT summarize, paraphrase, or interpret
|
|
- Copy verbatim content including original wording and formatting
|
|
|
|
|
|
FALLBACK MODE (ONLY IF FIELD IS MISSING):
|
|
- If a field is NOT explicitly stated anywhere in the content, you MAY infer it using clear contextual clues
|
|
- Inference rules:
|
|
* company_name: Look for patterns like "at [Company]", "Join [Company]", "[Company] is hiring"
|
|
* nature_of_work: Look for "remote", "onsite", "hybrid", "work from home", "office-based"
|
|
* location: Extract city/state/country mentions near job title or details
|
|
* title: Use the largest/primary heading if no explicit "job title" label exists
|
|
|
|
REQUIRED FIELDS (must always have a value):
|
|
- title: Exact job title or best inference
|
|
- company_name: Exact company name or best inference
|
|
- job_id: Use provided: {job_id}
|
|
- url: Use provided: {url}
|
|
|
|
OPTIONAL FIELDS (use exact text or "N/A" if not present and not inferable):
|
|
- salary_range
|
|
- nature_of_work
|
|
|
|
Page Content:
|
|
{cleaned_content}
|
|
Response format (ONLY return this JSON):
|
|
{{
|
|
"title": "...",
|
|
"company_name": "...",
|
|
"location": "...",
|
|
"description": "...",
|
|
"requirements": "...",
|
|
"qualifications": "...",
|
|
"salary_range": "...",
|
|
"nature_of_work": "...",
|
|
"job_id": "{job_id}",
|
|
"url": "{url}"
|
|
}}
|
|
"""
|
|
|
|
try:
|
|
response_text = await asyncio.get_event_loop().run_in_executor(
|
|
None,
|
|
lambda: self._generate_content_sync(prompt)
|
|
)
|
|
refined_data = self._parse_llm_response(response_text)
|
|
|
|
# Final validation - ensure required fields are present and meaningful
|
|
if refined_data:
|
|
required_fields = ['title', 'company_name', 'job_id', 'url']
|
|
for field in required_fields:
|
|
if not refined_data.get(field) or refined_data[field] in ["N/A", "", "Unknown", "Company", "Job"]:
|
|
return None # LLM failed to extract properly
|
|
|
|
return refined_data
|
|
return None
|
|
|
|
except Exception as e:
|
|
print(f"LLM refinement failed: {str(e)}")
|
|
return None
|
|
|
|
def _parse_llm_response(self, response_text: str) -> Dict[str, Any]:
|
|
json_match = re.search(r'```(?:json)?\s*({.*?})\s*```', response_text, re.DOTALL)
|
|
if not json_match:
|
|
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
|
if not json_match:
|
|
return None
|
|
|
|
try:
|
|
return json.loads(json_match.group(1) if '```' in response_text else json_match.group(0))
|
|
except json.JSONDecodeError:
|
|
return None
|
|
|
|
async def save_job_data(self, job_data: Dict[str, Any], keyword: str):
|
|
await self._save_to_db(job_data)
|
|
await self._save_to_markdown(job_data, keyword)
|
|
|
|
async def _save_to_db(self, job_data: Dict[str, Any]):
|
|
"""Save job data to PostgreSQL database with job_id uniqueness"""
|
|
try:
|
|
conn = psycopg2.connect(
|
|
host=self.db_host,
|
|
port=self.db_port,
|
|
database="postgres",
|
|
user=self.db_username,
|
|
password=self.db_password
|
|
)
|
|
cursor = conn.cursor()
|
|
|
|
cursor.execute('''
|
|
INSERT INTO jobs
|
|
(title, company_name, location, description, requirements,
|
|
qualifications, salary_range, nature_of_work, job_id, url, category, scraped_at)
|
|
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
|
|
ON CONFLICT (job_id) DO NOTHING
|
|
''', (
|
|
job_data.get("title", "N/A"),
|
|
job_data.get("company_name", "N/A"),
|
|
job_data.get("location", "N/A"),
|
|
job_data.get("description", "N/A"),
|
|
job_data.get("requirements", "N/A"),
|
|
job_data.get("qualifications", "N/A"),
|
|
job_data.get("salary_range", "N/A"),
|
|
job_data.get("nature_of_work", "N/A"),
|
|
job_data.get("job_id", "N/A"),
|
|
job_data.get("url", "N/A"),
|
|
job_data.get("category", "N/A"),
|
|
job_data.get("scraped_at")
|
|
))
|
|
|
|
conn.commit()
|
|
cursor.close()
|
|
conn.close()
|
|
|
|
print(f" 💾 Saved job to category '{job_data.get('category', 'N/A')}' with job_id: {job_data.get('job_id', 'N/A')}")
|
|
|
|
except Exception as e:
|
|
print(f"❌ Database save error: {e}")
|
|
|
|
async def _save_to_markdown(self, job_data: Dict[str, Any], keyword: str):
|
|
os.makedirs("linkedin_jobs", exist_ok=True)
|
|
filepath = os.path.join("linkedin_jobs", "linkedin_jobs_scraped.md")
|
|
write_header = not os.path.exists(filepath) or os.path.getsize(filepath) == 0
|
|
|
|
with open(filepath, "a", encoding="utf-8") as f:
|
|
if write_header:
|
|
f.write(f"# LinkedIn Jobs - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
|
|
f.write(f"## Job: {job_data.get('title', 'N/A')}\n\n")
|
|
f.write(f"- **Keyword**: {keyword}\n")
|
|
f.write(f"- **Company**: {job_data.get('company_name', 'N/A')}\n")
|
|
f.write(f"- **Location**: {job_data.get('location', 'N/A')}\n")
|
|
f.write(f"- **Nature of Work**: {job_data.get('nature_of_work', 'N/A')}\n")
|
|
f.write(f"- **Salary Range**: {job_data.get('salary_range', 'N/A')}\n")
|
|
f.write(f"- **Job ID**: {job_data.get('job_id', 'N/A')}\n")
|
|
f.write(f"- **Category**: {job_data.get('category', 'N/A')}\n")
|
|
f.write(f"- **Scraped At**: {job_data.get('scraped_at', 'N/A')}\n")
|
|
f.write(f"- **URL**: <{job_data.get('url', 'N/A')}>\n\n")
|
|
f.write(f"### Description\n\n{job_data.get('description', 'N/A')}\n\n")
|
|
f.write(f"### Requirements\n\n{job_data.get('requirements', 'N/A')}\n\n")
|
|
f.write(f"### Qualifications\n\n{job_data.get('qualifications', 'N/A')}\n\n")
|
|
f.write("---\n\n") |