from openai import OpenAI from typing import Dict, Any import asyncio import psycopg2 import os from datetime import datetime import json import re from bs4 import BeautifulSoup from dotenv import load_dotenv # Load environment variables from .env load_dotenv() class LLMJobRefiner: def __init__(self): deepseek_api_key = os.getenv("DEEPSEEK_API_KEY") if not deepseek_api_key: raise ValueError("DEEPSEEK_API_KEY not found in .env file.") # Database credentials from .env self.db_url = os.getenv("DB_URL") self.db_username = os.getenv("DB_USERNAME") self.db_password = os.getenv("DB_PASSWORD") self.db_host = os.getenv("DB_HOST") self.db_port = os.getenv("DB_PORT") if not self.db_url or not self.db_username or not self.db_password: raise ValueError("Database credentials not found in .env file.") # DeepSeek uses OpenAI-compatible API self.client = OpenAI( api_key=deepseek_api_key, base_url="https://api.deepseek.com/v1" ) self.model = "deepseek-chat" self._init_db() def _init_db(self): """Initialize PostgreSQL database connection and create Quelah Jobs table""" try: conn = psycopg2.connect( host=self.db_host, port=self.db_port, database="postgres", user=self.db_username, password=self.db_password ) cursor = conn.cursor() # ✅ CREATE NEW TABLE: quelah_jobs (no requirements field) cursor.execute(''' CREATE TABLE IF NOT EXISTS quelah_jobs ( id SERIAL PRIMARY KEY, title TEXT, company_name TEXT, location TEXT, description TEXT, qualifications TEXT, salary_range TEXT, nature_of_work TEXT, apply_type TEXT DEFAULT 'signup', job_id TEXT UNIQUE, url TEXT, category TEXT, scraped_at TIMESTAMP, posted_date TEXT, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) ''') # Ensure uniqueness constraint cursor.execute(''' ALTER TABLE quelah_jobs DROP CONSTRAINT IF EXISTS quelah_jobs_job_id_key; ALTER TABLE quelah_jobs ADD CONSTRAINT quelah_jobs_job_id_key UNIQUE (job_id); ''') # Create indexes cursor.execute('CREATE INDEX IF NOT EXISTS idx_quelah_job_id ON quelah_jobs(job_id)') cursor.execute('CREATE INDEX IF NOT EXISTS idx_quelah_category ON quelah_jobs(category)') cursor.execute('CREATE INDEX IF NOT EXISTS idx_quelah_posted_date ON quelah_jobs(posted_date)') cursor.execute('CREATE INDEX IF NOT EXISTS idx_quelah_apply_type ON quelah_jobs(apply_type)') conn.commit() cursor.close() conn.close() print("✅ Quelah Jobs table initialized successfully") except Exception as e: print(f"❌ Database initialization error: {e}") raise def _clean_html_for_llm(self, html_content: str) -> str: """Clean HTML to make it more readable for LLM while preserving key job structure""" try: soup = BeautifulSoup(html_content, 'html.parser') # Remove unwanted elements for element in soup(['script', 'style', 'nav', 'footer', 'header', 'aside', 'noscript']): element.decompose() # Keep only main content containers main_content = None candidates = [ soup.find('main'), soup.find('div', class_=re.compile(r'job|posting|content')), soup.find('article'), soup.body ] for candidate in candidates: if candidate: main_content = candidate break if not main_content: main_content = soup.body or soup # Extract text with some structure lines = [] for elem in main_content.descendants: if isinstance(elem, str): text = elem.strip() if text and len(text) > 5: # Skip short fragments lines.append(text) elif elem.name in ['h1', 'h2', 'h3', 'h4', 'p', 'li', 'strong', 'b']: text = elem.get_text().strip() if text: lines.append(text) # Join with newlines for better LLM parsing cleaned = '\n'.join(lines) # Limit length for LLM context if len(cleaned) > 10000: cleaned = cleaned[:10000] + "..." return cleaned except Exception as e: print(f"HTML cleaning error: {e}") return html_content[:100000] if len(html_content) > 100000 else html_content def _generate_content_sync(self, prompt: str) -> str: """Synchronous call to DeepSeek API""" try: response = self.client.chat.completions.create( model=self.model, messages=[{"role": "user", "content": prompt}], temperature=0.2, max_tokens=2048, stream=False ) return response.choices[0].message.content or "" except Exception as e: print(f"DeepSeek API error: {e}") return "" async def refine_job_data(self, raw_data: Dict[str, Any], target_field: str) -> Dict[str, Any]: page_content = raw_data.get('page_content', '') cleaned_content = self._clean_html_for_llm(page_content) job_id = raw_data.get('job_id', 'unknown') url = raw_data.get('url', 'N/A') posted_date = raw_data.get('posted_date', "12/01/25") # ✅ Fixed date # Detect platform from URL (for prompt only) platform = "unknown" if "ashbyhq.com" in url: platform = "ashby" elif "lever.co" in url: platform = "lever" elif "greenhouse.io" in url: platform = "greenhouse" # Platform-specific instructions platform_instructions = "" if platform == "ashby": platform_instructions = """ For Ashby jobs: - Title is usually in