Increase max pages to scrape and extend wait time between job title scrapes; add posted date to job data extraction

This commit is contained in:
Ofure Ikheloa 2025-12-09 09:30:44 +01:00
parent cbcffa8cd4
commit e216db35f9
4 changed files with 95 additions and 58 deletions

View File

@ -166,7 +166,7 @@ class AmazonJobScraper:
async def scrape_jobs(
self,
search_keywords: Optional[str],
max_pages: int = 1,
max_pages: int = 400,
credentials: Optional[Dict] = None
):
from datetime import timedelta # needed for date math

View File

@ -47,12 +47,12 @@ async def main():
await scraper.scrape_jobs(
search_keywords=search_keywords,
max_pages=3 # Amazon loads 10 per page; 3 pages = ~30 jobs
max_pages=400 # Amazon loads 10 per page; 3 pages = ~30 jobs
)
print(f"\n✅ Completed scraping for: {job_title}")
print(f"⏳ Waiting 90 seconds before next job title...")
time.sleep(90)
time.sleep(120)
print(f"\n✅ Completed full cycle. Restarting...")

View File

@ -75,6 +75,7 @@ class LLMJobRefiner:
url TEXT,
category TEXT,
scraped_at TIMESTAMP,
posted_date TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
@ -87,6 +88,7 @@ class LLMJobRefiner:
cursor.execute('CREATE INDEX IF NOT EXISTS idx_job_id ON jobs(job_id)')
cursor.execute('CREATE INDEX IF NOT EXISTS idx_category ON jobs(category)')
cursor.execute('CREATE INDEX IF NOT EXISTS idx_posted_date ON jobs(posted_date)')
conn.commit()
cursor.close()
@ -137,49 +139,31 @@ class LLMJobRefiner:
return ""
async def refine_job_data(self, raw_data: Dict[str, Any], target_field: str) -> Dict[str, Any]:
# Clean the raw HTML content for better LLM processing
page_content = raw_data.get('page_content', '')
cleaned_content = self._clean_html_for_llm(page_content)
# Get job_id and url from raw data
job_id = raw_data.get('job_id', 'unknown')
url = raw_data.get('url', 'N/A')
posted_date = raw_data.get('posted_date', datetime.now().strftime("%m/%d/%y"))
prompt = f"""
You are a job posting data extractor with two modes:
You are a job posting data extractor.
CRITICAL INSTRUCTIONS FOR TEXT FIELDS:
- description: Extract the COMPLETE job description text (all paragraphs, bullet points, everything)
- requirements: Extract the COMPLETE requirements section text if present (all details, don't summarize)
- qualifications: Extract the COMPLETE qualifications section text if present (all details, don't summarize)
- If these sections are not explicitly labeled but exist in the content, extract the relevant portions
EXTRACT EXACT TEXT - DO NOT SUMMARIZE, PARAPHRASE, OR INVENT.
PRIMARY MODE (PREFERRED):
- Extract EXACT text as it appears on the page for all fields
- DO NOT summarize, paraphrase, or interpret
- Copy verbatim content including original wording and formatting
For these critical fields, follow these rules:
- description: Extract ALL job description text. If ANY job details exist (duties, responsibilities, overview), include them. Only use "Not provided" if absolutely no description exists.
- requirements: Extract ALL requirements text. If ANY requirements exist (skills, experience, education needed), include them. Only use "Not provided" if none exist.
- qualifications: Extract ALL qualifications text. If ANY qualifications exist, include them. Only use "Not provided" if none exist.
REQUIRED FIELDS (must have valid values, never "N/A"):
- title, company_name, job_id, url
FALLBACK MODE (ONLY IF FIELD IS MISSING):
- If a field is NOT explicitly stated anywhere in the content, you MAY infer it using clear contextual clues
- Inference rules:
* company_name: Look for patterns like "at [Company]", "Join [Company]", "[Company] is hiring"
* nature_of_work: Look for "remote", "onsite", "hybrid", "work from home", "office-based"
* location: Extract city/state/country mentions near job title or details
* title: Use the largest/primary heading if no explicit "job title" label exists
REQUIRED FIELDS (must always have a value):
- title: Exact job title or best inference
- company_name: Exact company name or best inference
- job_id: Use provided: {job_id}
- url: Use provided: {url}
OPTIONAL FIELDS (use exact text or "N/A" if not present and not inferable):
- salary_range
- nature_of_work
OPTIONAL FIELDS (can be "Not provided"):
- location, salary_range, nature_of_work
Page Content:
{cleaned_content}
Response format (ONLY return this JSON):
{{
"title": "...",
@ -202,15 +186,35 @@ class LLMJobRefiner:
)
refined_data = self._parse_llm_response(response_text)
# Final validation - ensure required fields are present and meaningful
if refined_data:
required_fields = ['title', 'company_name', 'job_id', 'url']
for field in required_fields:
if not refined_data.get(field) or refined_data[field] in ["N/A", "", "Unknown", "Company", "Job"]:
return None # LLM failed to extract properly
if not refined_data:
return None
return refined_data
return None
# Validate required fields
required_fields = ['title', 'company_name', 'job_id', 'url']
for field in required_fields:
if not refined_data.get(field) or refined_data[field].strip() in ["N/A", "", "Unknown", "Company", "Job"]:
return None
# CRITICAL: Validate content fields - check if they SHOULD exist
content_fields = ['description', 'requirements', 'qualifications']
cleaned_original = cleaned_content.lower()
# Simple heuristic: if page contains job-related keywords, content fields should NOT be "Not provided"
job_indicators = ['responsibilit', 'duties', 'require', 'qualifi', 'skill', 'experienc', 'educat', 'degree', 'bachelor', 'master']
has_job_content = any(indicator in cleaned_original for indicator in job_indicators)
if has_job_content:
for field in content_fields:
value = refined_data.get(field, "").strip()
if value in ["Not provided", "N/A", ""]:
# LLM failed to extract existing content
print(f" ⚠ LLM returned '{value}' for {field} but job content appears present")
return None
# Add the posted_date to the refined data
refined_data['posted_date'] = posted_date
return refined_data
except Exception as e:
print(f"LLM refinement failed: {str(e)}")
@ -247,8 +251,8 @@ class LLMJobRefiner:
cursor.execute('''
INSERT INTO jobs
(title, company_name, location, description, requirements,
qualifications, salary_range, nature_of_work, job_id, url, category, scraped_at)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
qualifications, salary_range, nature_of_work, job_id, url, category, scraped_at, posted_date)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
ON CONFLICT (job_id) DO NOTHING
''', (
job_data.get("title", "N/A"),
@ -262,7 +266,8 @@ class LLMJobRefiner:
job_data.get("job_id", "N/A"),
job_data.get("url", "N/A"),
job_data.get("category", "N/A"),
job_data.get("scraped_at")
job_data.get("scraped_at"),
job_data.get("posted_date", "N/A")
))
conn.commit()
@ -283,15 +288,16 @@ class LLMJobRefiner:
if write_header:
f.write(f"# LinkedIn Jobs - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
f.write(f"## Job: {job_data.get('title', 'N/A')}\n\n")
f.write(f"- **Keyword**: {keyword}\n")
f.write(f"- **Company**: {job_data.get('company_name', 'N/A')}\n")
f.write(f"- **Location**: {job_data.get('location', 'N/A')}\n")
f.write(f"- **Nature of Work**: {job_data.get('nature_of_work', 'N/A')}\n")
f.write(f"- **Salary Range**: {job_data.get('salary_range', 'N/A')}\n")
f.write(f"- **Job ID**: {job_data.get('job_id', 'N/A')}\n")
f.write(f"- **Category**: {job_data.get('category', 'N/A')}\n")
f.write(f"- **Scraped At**: {job_data.get('scraped_at', 'N/A')}\n")
f.write(f"- **URL**: <{job_data.get('url', 'N/A')}>\n\n")
f.write(f"- *Keyword*: {keyword}\n")
f.write(f"- *Company*: {job_data.get('company_name', 'N/A')}\n")
f.write(f"- *Location*: {job_data.get('location', 'N/A')}\n")
f.write(f"- *Nature of Work*: {job_data.get('nature_of_work', 'N/A')}\n")
f.write(f"- *Salary Range*: {job_data.get('salary_range', 'N/A')}\n")
f.write(f"- *Job ID*: {job_data.get('job_id', 'N/A')}\n")
f.write(f"- *Posted Date*: {job_data.get('posted_date', 'N/A')}\n")
f.write(f"- *Category*: {job_data.get('category', 'N/A')}\n")
f.write(f"- *Scraped At*: {job_data.get('scraped_at', 'N/A')}\n")
f.write(f"- *URL*: <{job_data.get('url', 'N/A')}>\n\n")
f.write(f"### Description\n\n{job_data.get('description', 'N/A')}\n\n")
f.write(f"### Requirements\n\n{job_data.get('requirements', 'N/A')}\n\n")
f.write(f"### Qualifications\n\n{job_data.get('qualifications', 'N/A')}\n\n")

31
trim.py Normal file
View File

@ -0,0 +1,31 @@
# Keep cycling through all job titles
while True:
# Shuffle job titles to randomize order
random.shuffle(job_titles)
for job_title in job_titles:
search_keywords = f"{job_title} location:{fixed_location}"
print(f"\n{'='*60}")
print(f"Starting scrape for: {search_keywords}")
print(f"{'='*60}")
await scraper.scrape_jobs(
search_keywords=search_keywords,
credentials={
"email": os.getenv("SCRAPING_USERNAME"),
"password": os.getenv("SCRAPING_PASSWORD")
}
)
print(f"\n✅ Completed scraping for: {job_title}")
print(f"⏳ Waiting 2 minutes before next job title...")
# Wait 2 minutes before next job title
time.sleep(120)
print(f"\n✅ Completed full cycle of all job titles")
print(f"🔄 Starting new cycle...")
if _name_ == "_main_":
asyncio.run(main())