diff --git a/job_scraper2.py b/job_scraper2.py deleted file mode 100644 index d9b247b..0000000 --- a/job_scraper2.py +++ /dev/null @@ -1,561 +0,0 @@ - -import asyncio -import random -from typing import Optional, Dict -from playwright.async_api import async_playwright, TimeoutError as PlaywrightTimeoutError -from browserforge.injectors.playwright import AsyncNewContext -from llm_agent import LLMJobRefiner -import re -from fetcher import StealthyFetcher -from datetime import datetime -import json -import redis - - -class LinkedInJobScraper: - def __init__( - self, - engine, - db_path: str = "linkedin_jobs.db", - human_speed: float = 1.0, - user_request: str = "Extract all standard job details" - ): - self.engine = engine - self.db_path = db_path - self.human_speed = human_speed - self.user_request = user_request - self._init_db() - self.llm_agent = LLMJobRefiner() - # Initialize Redis connection - self.redis_client = redis.Redis(host='localhost', port=6379, db=0, decode_responses=True) - - def _init_db(self): - # This method is kept for backward compatibility but LLMJobRefiner handles PostgreSQL now - pass - - async def _human_click(self, page, element, wait_after: bool = True): - if not element: - return False - await element.scroll_into_view_if_needed() - await asyncio.sleep(random.uniform(0.3, 0.8) * self.human_speed) - try: - await element.click() - if wait_after: - await asyncio.sleep(random.uniform(2, 4) * self.human_speed) - return True - except: - return False - - async def _login(self, page, credentials: Dict) -> bool: - print("🔐 Navigating to LinkedIn login page...") - await page.goto("https://www.linkedin.com/login", timeout=120000) - await asyncio.sleep(random.uniform(2.0, 3.5) * self.human_speed) - - email_field = await page.query_selector('input[name="session_key"]') - if not email_field: - print("❌ Email field not found.") - return False - - print("âœī¸ Typing username...") - await email_field.click() - await asyncio.sleep(random.uniform(0.4, 0.9) * self.human_speed) - for char in credentials["email"]: - await page.keyboard.type(char) - await asyncio.sleep(random.uniform(0.06, 0.14) * self.human_speed) - await asyncio.sleep(random.uniform(1.0, 1.8) * self.human_speed) - - password_field = await page.query_selector('input[name="session_password"]') - if not password_field: - print("❌ Password field not found.") - return False - - print("🔒 Typing password...") - await password_field.click() - await asyncio.sleep(random.uniform(0.3, 0.7) * self.human_speed) - for char in credentials["password"]: - await page.keyboard.type(char) - await asyncio.sleep(random.uniform(0.08, 0.16) * self.human_speed) - await asyncio.sleep(random.uniform(0.8, 1.5) * self.human_speed) - - print("✅ Submitting login form...") - await page.keyboard.press("Enter") - - for _ in range(15): - current_url = page.url - if "/feed" in current_url or "/jobs" in current_url: - if "login" not in current_url: - print("✅ Login successful!") - await asyncio.sleep(random.uniform(2.0, 3.0) * self.human_speed) - return True - await asyncio.sleep(1) - print("❌ Login may have failed.") - return False - - async def _extract_page_content_for_llm(self, page) -> str: - """ - Extract raw page content as HTML/text for LLM processing - The LLM will handle all extraction logic, not specific selectors - """ - await asyncio.sleep(2 * self.human_speed) - await self.engine._human_like_scroll(page) - await asyncio.sleep(2 * self.human_speed) - page_content = await page.content() - return page_content - - def _calculate_keyword_match(self, title: str, keywords: str) -> float: - if not title or not keywords: - return 0.0 - title_lower = title.lower() - keyword_list = [kw.strip().lower() for kw in keywords.split()] - matches = sum(1 for kw in keyword_list if kw in title_lower) - return matches / len(keyword_list) if keyword_list else 0.0 - - def _extract_location_from_keywords(self, search_keywords: str) -> str: - location_match = re.search(r'location:\s*([^,]+)', search_keywords, re.IGNORECASE) - return location_match.group(1).strip().lower() if location_match else "" - - async def _scrape_jobs_from_current_page(self, page, search_keywords: str, seen_job_ids, all_job_links): - current_links = await page.query_selector_all("a[href*='/jobs/view/']") - new_jobs = 0 - location_from_keywords = self._extract_location_from_keywords(search_keywords) - - for link in current_links: - href = await link.get_attribute("href") - if href: - full_url = href if href.startswith("http") else f"https://www.linkedin.com{href}" - job_id = href.split("/view/")[-1].split("/")[0] if "/view/" in href else href - - if job_id and job_id not in seen_job_ids: - title_element = await link.query_selector("span.job-title, h3, .job-card-title") - if title_element: - title = await title_element.inner_text() - match_percentage = self._calculate_keyword_match(title, search_keywords) - location_match = True - if location_from_keywords: - location_element = await link.query_selector("span.job-location, .job-card-location, .location") - if location_element: - location_text = await location_element.inner_text() - location_match = location_from_keywords in location_text.lower() - - if match_percentage >= 0.7 and location_match: - seen_job_ids.add(job_id) - all_job_links.append((href, title)) - new_jobs += 1 - elif match_percentage < 0.7: - print(f" âš ī¸ Skipping job due to low keyword match: {title[:50]}... (match: {match_percentage:.2%})") - elif not location_match: - print(f" âš ī¸ Skipping job due to location mismatch: {title[:50]}... (expected: {location_from_keywords})") - else: - seen_job_ids.add(job_id) - all_job_links.append((href, "Unknown Title")) - new_jobs += 1 - return new_jobs - - async def _handle_pagination(self, page, search_keywords: str, seen_job_ids, all_job_links): - current_page = 1 - while True: - print(f"📄 Processing page {current_page}") - new_jobs = await self._scrape_jobs_from_current_page(page, search_keywords, seen_job_ids, all_job_links) - print(f" ➕ Found {new_jobs} new job(s) on page {current_page} (total: {len(all_job_links)})") - - next_btn = await page.query_selector("button[aria-label='Next']") - if next_btn and await next_btn.is_enabled(): - await self._human_click(page, next_btn) - await asyncio.sleep(random.uniform(4.0, 6.0) * self.human_speed) - try: - await page.wait_for_function("() => window.location.href.includes('start=')", timeout=120000) - except: - pass - current_page += 1 - else: - print("🔚 'Next' button not available — stopping pagination.") - break - - async def _handle_infinite_scroll(self, page, search_keywords: str, seen_job_ids, all_job_links): - last_height = await page.evaluate("document.body.scrollHeight") - no_new_jobs_count = 0 - max_no_new = 3 - - while no_new_jobs_count < max_no_new: - await page.evaluate("window.scrollTo(0, document.body.scrollHeight)") - await asyncio.sleep(random.uniform(3.0, 5.0) * self.human_speed) - - new_jobs_found = await self._scrape_jobs_from_current_page(page, search_keywords, seen_job_ids, all_job_links) - print(f" ➕ Found {new_jobs_found} new job(s) (total: {len(all_job_links)})") - - new_height = await page.evaluate("document.body.scrollHeight") - if new_height == last_height: - no_new_jobs_count += 1 - else: - no_new_jobs_count = 0 - last_height = new_height - - if new_jobs_found == 0 and no_new_jobs_count >= 1: - print("🔚 No new jobs loaded. Stopping scroll.") - break - - async def _extract_job_posted_date(self, page) -> str: - """ - Extract the job posted date from LinkedIn job page - Returns date in MM/DD/YY format - """ - try: - # Try multiple selectors for the posted date - selectors = [ - "span[class*='posted-date']", - "span:has-text('ago')", - "span:has-text('Posted')", - "span.job-details-jobs-unified-top-card__job-insight-view-model-secondary" - ] - - for selector in selectors: - date_element = await page.query_selector(selector) - if date_element: - date_text = await date_element.inner_text() - if date_text: - # Clean the text - date_text = date_text.strip() - - # Check if it contains "ago" (e.g., "2 hours ago", "1 day ago") - if "ago" in date_text.lower(): - # Use current date since it's relative - current_date = datetime.now() - return current_date.strftime("%m/%d/%y") - elif "Posted" in date_text: - # Extract date from "Posted X days ago" or similar - current_date = datetime.now() - return current_date.strftime("%m/%d/%y") - else: - # Try to parse actual date formats - # Common LinkedIn format: "Mar 15, 2025" - import re - date_match = re.search(r'([A-Za-z]+)\s+(\d{1,2}),\s+(\d{4})', date_text) - if date_match: - month_name = date_match.group(1) - day = date_match.group(2) - year = date_match.group(3) - - # Convert month name to number - months = { - 'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', - 'May': '05', 'Jun': '06', 'Jul': '07', 'Aug': '08', - 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12' - } - - month_num = months.get(month_name[:3], '01') - return f"{month_num}/{day.zfill(2)}/{year[-2:]}" - - # If no date found, use current date - current_date = datetime.now() - return current_date.strftime("%m/%d/%y") - - except Exception as e: - print(f" âš ī¸ Error extracting posted date: {str(e)}") - # Return current date as fallback - current_date = datetime.now() - return current_date.strftime("%m/%d/%y") - - async def _add_job_to_redis_cache(self, job_url: str, job_id: str, error_type: str): - """Add failed job to Redis cache for later retry""" - try: - job_data = { - "job_url": job_url, - "job_id": job_id, - "error_type": error_type, - "timestamp": datetime.now().isoformat() - } - # Use job_id as the key to avoid duplicates - self.redis_client.hset("failed_jobs", job_id, json.dumps(job_data)) - print(f" đŸ“Ļ Added failed job to Redis cache: {job_id} (Error: {error_type})") - except Exception as e: - print(f" ❌ Failed to add job to Redis cache: {str(e)}") - - async def scrape_jobs( - self, - search_keywords: Optional[str], - max_pages: int = 1, - credentials: Optional[Dict] = None - ): - location_match = re.search(r'location:\s*([^,]+)', search_keywords, re.IGNORECASE) - location = location_match.group(1).strip() if location_match else "" - clean_keywords = re.sub(r'location:\s*[^,]+', '', search_keywords, flags=re.IGNORECASE).strip() - encoded_keywords = clean_keywords.replace(" ", "%20") - - search_url = f"https://www.linkedin.com/jobs/search/?keywords={encoded_keywords}" - if location: - search_url += f"&location={location.replace(' ', '%20')}" - - profile = self.engine._select_profile() - renderer = random.choice(self.engine.common_renderers[self.engine.os]) - vendor = random.choice(self.engine.common_vendors) - spoof_script = self.engine._get_spoof_script(renderer, vendor) - - async with async_playwright() as pw: - browser = await pw.chromium.launch( - headless=False, - args=['--disable-blink-features=AutomationControlled'] - ) - context = await AsyncNewContext(browser, fingerprint=profile) - - await context.add_init_script(f""" - Object.defineProperty(navigator, 'hardwareConcurrency', {{ get: () => {profile.navigator.hardwareConcurrency} }}); - Object.defineProperty(navigator, 'deviceMemory', {{ get: () => {profile.navigator.deviceMemory} }}); - Object.defineProperty(navigator, 'platform', {{ get: () => '{profile.navigator.platform}' }}); - """) - await context.add_init_script(spoof_script) - - page = await context.new_page() - - # Create a temporary fetcher for protection checks on main page - temp_fetcher = StealthyFetcher(self.engine, browser, context) - - session_loaded = await self.engine.load_session(context) - login_successful = False - - if session_loaded: - print("🔁 Using saved session — verifying login...") - await page.goto("https://www.linkedin.com/feed/", timeout=120000) - if "feed" in page.url and "login" not in page.url: - print("✅ Session still valid.") - login_successful = True - else: - print("âš ī¸ Saved session expired — re-authenticating.") - session_loaded = False - - if not session_loaded and credentials: - print("🔐 Performing fresh login...") - login_successful = await self._login(page, credentials) - if login_successful: - await self.engine.save_session(context) - else: - print("❌ Login failed. Exiting.") - await browser.close() - self.engine.report_outcome("block") - return - elif not credentials: - print("â„šī¸ No credentials — proceeding as guest.") - login_successful = True - - await page.wait_for_load_state("load", timeout=120000) - print("✅ Post-login page fully loaded. Starting search...") - - # >>> PROTECTION CHECK USING FETCHER LOGIC <<< - protection_type = await temp_fetcher._detect_protection(page) - if protection_type: - print(f"đŸ›Ąī¸ Protection detected on initial page: {protection_type}") - content_accessible = await temp_fetcher._is_content_accessible(page) - if not content_accessible: - print("🔒 Content not accessible.") - handled = False - if protection_type == "cloudflare": - handled = await self.engine._handle_cloudflare(page) - elif protection_type == "captcha": - handled = False - if not handled: - await browser.close() - self.engine.report_outcome("protection_block") - return - else: - print("✅ Protection present but content accessible — proceeding.") - - print(f"🔍 Searching for: {search_keywords}") - await page.goto(search_url, wait_until='load', timeout=120000) - await asyncio.sleep(random.uniform(4.0, 6.0) * self.human_speed) - - # >>> PROTECTION CHECK ON SEARCH PAGE <<< - protection_type = await temp_fetcher._detect_protection(page) - if protection_type: - print(f"đŸ›Ąī¸ Protection detected on search page: {protection_type}") - content_accessible = await temp_fetcher._is_content_accessible(page) - if not content_accessible: - print("🔒 Content not accessible.") - handled = False - if protection_type == "cloudflare": - handled = await self.engine._handle_cloudflare(page) - elif protection_type == "captcha": - handled = False - if not handled: - await browser.close() - self.engine.report_outcome("protection_block") - return - else: - print("✅ Protection present but content accessible — proceeding.") - - all_job_links = [] - seen_job_ids = set() - - print("🔄 Collecting initial job links...") - initial_jobs = await self._scrape_jobs_from_current_page(page, search_keywords, seen_job_ids, all_job_links) - print(f" ➕ Found {initial_jobs} initial job(s) (total: {len(all_job_links)})") - - iteration = 1 - while iteration <= 5: # Fixed the condition - was "iteration >= 5" which never runs - print(f"🔄 Iteration {iteration}: Checking for new jobs...") - - prev_job_count = len(all_job_links) - await self._handle_infinite_scroll(page, search_keywords, seen_job_ids, all_job_links) - new_jobs_count = len(all_job_links) - prev_job_count - - if new_jobs_count > 0: - print(f" ➕ Found {new_jobs_count} new jobs via infinite scroll") - iteration += 1 - continue - - pagination_exists = await page.query_selector("button[aria-label='Next']") - - if pagination_exists: - print("â­ī¸ Pagination detected. Processing pages...") - await self._handle_pagination(page, search_keywords, seen_job_ids, all_job_links) - iteration += 1 - continue - else: - print("🔄 Refreshing page to check for new results...") - await page.reload(wait_until='load') - await asyncio.sleep(random.uniform(3.0, 5.0) * self.human_speed) - - new_jobs_after_refresh = await self._scrape_jobs_from_current_page(page, search_keywords, seen_job_ids, all_job_links) - if new_jobs_after_refresh > 0: - print(f" ➕ Found {new_jobs_after_refresh} new job(s) after refresh") - iteration += 1 - continue - else: - print("🔚 No new jobs found after refresh. Stopping.") - break - - print(f"✅ Collected {len(all_job_links)} unique job links.") - - scraped_count = 0 - for idx, (href, title) in enumerate(all_job_links): - try: - full_url = href if href.startswith("http") else f"https://www.linkedin.com{href}" - print(f" → Opening job {idx+1}/{len(all_job_links)}: {full_url}") - - fetcher = StealthyFetcher(self.engine, browser, context) - job_page = await fetcher.fetch_url(full_url, wait_for_selector="h1.t-24") - if not job_page: - print(f" ❌ Failed to fetch job page {full_url} after retries.") - await self._add_job_to_redis_cache(full_url, full_url.split("/")[-2] if "/jobs/view/" in full_url else "unknown", "fetch_failure") - self.engine.report_outcome("fetch_failure", url=full_url) - continue - - # Extract posted date from the job page - posted_date = await self._extract_job_posted_date(job_page) - print(f" 📅 Posted date extracted: {posted_date}") - - apply_btn = None - apply_selectors = [ - "button[aria-label*='Apply']", - "button:has-text('Apply')", - "a:has-text('Apply')", - "button:has-text('Easy Apply')" - ] - for selector in apply_selectors: - apply_btn = await job_page.query_selector(selector) - if apply_btn: - break - - final_url = full_url - external_url = None - page_content = None - - if apply_btn: - print(" → Clicking 'Apply' / 'Easy Apply' button...") - - page_waiter = asyncio.create_task(context.wait_for_event("page")) - await self._human_click(job_page, apply_btn, wait_after=False) - - external_page = None - try: - external_page = await asyncio.wait_for(page_waiter, timeout=5.0) - print(" 🌐 External job site opened in new tab.") - await external_page.wait_for_load_state("load", timeout=120000) - await asyncio.sleep(2 * self.human_speed) - await self.engine._human_like_scroll(external_page) - await asyncio.sleep(2 * self.human_speed) - - # Extract raw content from external page for LLM processing - external_url = external_page.url - final_url = external_url - page_content = await self._extract_page_content_for_llm(external_page) - - if not external_page.is_closed(): - await external_page.close() - - except asyncio.TimeoutError: - print(" đŸ–Ĩī¸ No external tab — scraping LinkedIn job page directly.") - await job_page.wait_for_timeout(60000) - try: - await job_page.wait_for_selector("div.jobs-apply-button--fixed, div.jobs-easy-apply-modal", timeout=80000) - except PlaywrightTimeoutError: - pass - await self.engine._human_like_scroll(job_page) - await asyncio.sleep(2 * self.human_speed) - page_content = await self._extract_page_content_for_llm(job_page) - else: - print(" âš ī¸ No 'Apply' button found — scraping job details directly.") - await self.engine._human_like_scroll(job_page) - await asyncio.sleep(2 * self.human_speed) - page_content = await self._extract_page_content_for_llm(job_page) - - job_id = full_url.split("/")[-2] if "/jobs/view/" in full_url else "unknown" - - raw_data = { - "page_content": page_content, - "url": final_url, - "job_id": job_id, - "search_keywords": search_keywords, - "posted_date": posted_date # Add the posted date to raw data - } - - # LLM agent is now fully responsible for extraction and validation - refined_data = await self.llm_agent.refine_job_data(raw_data, self.user_request) - - if refined_data and refined_data.get("title", "N/A") != "N/A": - # Ensure compulsory fields are present (fallback if LLM missed them) - compulsory_fields = ['company_name', 'job_id', 'url'] - for field in compulsory_fields: - if not refined_data.get(field) or refined_data[field] in ["N/A", "", "Unknown"]: - if field == 'job_id': - refined_data[field] = job_id - elif field == 'url': - refined_data[field] = final_url - elif field == 'company_name': - refined_data[field] = "Unknown Company" - - refined_data['scraped_at'] = datetime.now().isoformat() - refined_data['category'] = clean_keywords - refined_data['posted_date'] = posted_date # Add posted date to refined data - await self.llm_agent.save_job_data(refined_data, search_keywords) - scraped_count += 1 - print(f" ✅ Scraped and refined: {refined_data['title'][:50]}...") - self.engine.report_outcome("success", url=raw_data["url"]) - else: - print(f" 🟡 Could not extract meaningful data from: {final_url}") - await self._add_job_to_redis_cache(final_url, job_id, "llm_failure") - self.engine.report_outcome("llm_failure", url=raw_data["url"]) - - await job_page.close() - - except Exception as e: - error_msg = str(e)[:100] - print(f" âš ī¸ Failed on job {idx+1}: {error_msg}") - job_id = full_url.split("/")[-2] if "/jobs/view/" in full_url else "unknown" if 'full_url' in locals() else "unknown" - job_url = full_url if 'full_url' in locals() else "unknown" - await self._add_job_to_redis_cache(job_url, job_id, f"exception: {error_msg}") - if 'job_page' in locals() and job_page: - await job_page.close() - continue - - finally: - print(" â†Šī¸ Returning to LinkedIn search results...") - await page.goto(search_url, timeout=120000) - await asyncio.sleep(4 * self.human_speed) - - await browser.close() - - if scraped_count > 0: - self.engine.report_outcome("success") - print(f"✅ Completed! Processed {scraped_count} jobs for '{search_keywords}' based on request '{self.user_request}'.") - else: - self.engine.report_outcome("captcha") - print("âš ī¸ No jobs processed successfully.")