modify to queue failed jobs and also extract date of job posting
This commit is contained in:
parent
4782f174e2
commit
cbcffa8cd4
@ -1,13 +1,15 @@
|
|||||||
"Specifically for scraping job postings from Amazon Jobs."
|
"Specifically for scraping job postings from Amazon Jobs."
|
||||||
import asyncio
|
import asyncio
|
||||||
import random
|
import random
|
||||||
import re
|
|
||||||
from typing import Optional, Dict
|
from typing import Optional, Dict
|
||||||
from playwright.async_api import async_playwright, TimeoutError as PlaywrightTimeoutError
|
from playwright.async_api import async_playwright, TimeoutError as PlaywrightTimeoutError
|
||||||
from browserforge.injectors.playwright import AsyncNewContext
|
from browserforge.injectors.playwright import AsyncNewContext
|
||||||
from llm_agent import LLMJobRefiner
|
from llm_agent import LLMJobRefiner
|
||||||
|
import re
|
||||||
from fetcher import StealthyFetcher
|
from fetcher import StealthyFetcher
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
import json
|
||||||
|
import redis
|
||||||
|
|
||||||
|
|
||||||
class AmazonJobScraper:
|
class AmazonJobScraper:
|
||||||
@ -22,7 +24,12 @@ class AmazonJobScraper:
|
|||||||
self.db_path = db_path
|
self.db_path = db_path
|
||||||
self.human_speed = human_speed
|
self.human_speed = human_speed
|
||||||
self.user_request = user_request
|
self.user_request = user_request
|
||||||
|
self._init_db()
|
||||||
self.llm_agent = LLMJobRefiner()
|
self.llm_agent = LLMJobRefiner()
|
||||||
|
self.redis_client = redis.Redis(host='localhost', port=6379, db=0, decode_responses=True)
|
||||||
|
|
||||||
|
def _init_db(self):
|
||||||
|
pass # Handled by LLMJobRefiner
|
||||||
|
|
||||||
async def _human_click(self, page, element, wait_after: bool = True):
|
async def _human_click(self, page, element, wait_after: bool = True):
|
||||||
if not element:
|
if not element:
|
||||||
@ -32,30 +39,15 @@ class AmazonJobScraper:
|
|||||||
try:
|
try:
|
||||||
await element.click()
|
await element.click()
|
||||||
if wait_after:
|
if wait_after:
|
||||||
await asyncio.sleep(random.uniform(1.0, 2.0) * self.human_speed)
|
await asyncio.sleep(random.uniform(2, 4) * self.human_speed)
|
||||||
return True
|
return True
|
||||||
except:
|
except:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def _extract_location_from_keywords(self, search_keywords: str) -> str:
|
async def _login(self, page, credentials: Dict) -> bool:
|
||||||
location_match = re.search(r'location:\s*([^,]+)', search_keywords, re.IGNORECASE)
|
# Amazon job pages do NOT require login.
|
||||||
return location_match.group(1).strip() if location_match else ""
|
# Skip login unless we're scraping internal dashboards (not needed here).
|
||||||
|
return True
|
||||||
def _build_amazon_search_url(self, keywords: str) -> str:
|
|
||||||
clean_keywords = re.sub(r'location:\s*[^,]+', '', keywords, flags=re.IGNORECASE).strip()
|
|
||||||
location = self._extract_location_from_keywords(keywords)
|
|
||||||
|
|
||||||
base_url = "https://www.amazon.jobs/en/search?"
|
|
||||||
params = []
|
|
||||||
|
|
||||||
if clean_keywords:
|
|
||||||
params.append(f"base_query={clean_keywords.replace(' ', '+')}")
|
|
||||||
if location:
|
|
||||||
params.append(f"loc_query={location.replace(' ', '+')}")
|
|
||||||
params.append("offset=0")
|
|
||||||
params.append("result_limit=10")
|
|
||||||
|
|
||||||
return base_url + "&".join(params)
|
|
||||||
|
|
||||||
async def _extract_page_content_for_llm(self, page) -> str:
|
async def _extract_page_content_for_llm(self, page) -> str:
|
||||||
await asyncio.sleep(2 * self.human_speed)
|
await asyncio.sleep(2 * self.human_speed)
|
||||||
@ -63,60 +55,131 @@ class AmazonJobScraper:
|
|||||||
await asyncio.sleep(2 * self.human_speed)
|
await asyncio.sleep(2 * self.human_speed)
|
||||||
return await page.content()
|
return await page.content()
|
||||||
|
|
||||||
async def _scrape_job_links_from_page(self, page, seen_job_ids, all_job_links):
|
def _calculate_keyword_match(self, title: str, keywords: str) -> float:
|
||||||
job_cards = await page.query_selector_all('div.job-tile a[href^="/en/jobs/"]')
|
if not title or not keywords:
|
||||||
|
return 0.0
|
||||||
|
title_lower = title.lower()
|
||||||
|
keyword_list = [kw.strip().lower() for kw in keywords.split()]
|
||||||
|
matches = sum(1 for kw in keyword_list if kw in title_lower)
|
||||||
|
return matches / len(keyword_list) if keyword_list else 0.0
|
||||||
|
|
||||||
|
def _extract_location_from_keywords(self, search_keywords: str) -> str:
|
||||||
|
location_match = re.search(r'location:\s*([^,]+)', search_keywords, re.IGNORECASE)
|
||||||
|
return location_match.group(1).strip().lower() if location_match else ""
|
||||||
|
|
||||||
|
async def _scrape_jobs_from_current_page(self, page, search_keywords: str, seen_job_ids, all_job_links):
|
||||||
|
current_links = await page.query_selector_all("a[href*='/jobs/']")
|
||||||
new_jobs = 0
|
new_jobs = 0
|
||||||
for card in job_cards:
|
location_from_keywords = self._extract_location_from_keywords(search_keywords)
|
||||||
href = await card.get_attribute("href")
|
|
||||||
if not href:
|
|
||||||
continue
|
|
||||||
full_url = f"https://www.amazon.jobs{href}" if href.startswith("/") else href
|
|
||||||
job_id = href.split("/")[-1] if href.split("/")[-1] else "unknown"
|
|
||||||
|
|
||||||
if job_id in seen_job_ids:
|
for link in current_links:
|
||||||
|
href = await link.get_attribute("href")
|
||||||
|
if not href or "page=" in href or "search?" in href:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
title_element = await card.query_selector('h3')
|
full_url = href if href.startswith("http") else f"https://www.amazon.jobs{href}"
|
||||||
|
job_id = href.strip("/").split("/")[-1] if href else "unknown"
|
||||||
|
|
||||||
|
if job_id and job_id not in seen_job_ids:
|
||||||
|
title_element = await link.query_selector("h3") or await link.query_selector(".job-title")
|
||||||
title = await title_element.inner_text() if title_element else "Unknown Title"
|
title = await title_element.inner_text() if title_element else "Unknown Title"
|
||||||
|
|
||||||
seen_job_ids.add(job_id)
|
match_percentage = self._calculate_keyword_match(title, search_keywords)
|
||||||
all_job_links.append((full_url, title))
|
location_match = True
|
||||||
new_jobs += 1
|
if location_from_keywords:
|
||||||
|
location_element = await link.query_selector(".location-and-id")
|
||||||
|
if location_element:
|
||||||
|
location_text = await location_element.inner_text()
|
||||||
|
location_match = location_from_keywords in location_text.lower()
|
||||||
|
|
||||||
|
if match_percentage >= 0.7 and location_match:
|
||||||
|
seen_job_ids.add(job_id)
|
||||||
|
all_job_links.append((href, title))
|
||||||
|
new_jobs += 1
|
||||||
|
elif match_percentage < 0.7:
|
||||||
|
print(f" ⚠️ Skipping job due to low keyword match: {title[:50]}... (match: {match_percentage:.2%})")
|
||||||
|
elif not location_match:
|
||||||
|
print(f" ⚠️ Skipping job due to location mismatch: {title[:50]}... (expected: {location_from_keywords})")
|
||||||
|
else:
|
||||||
|
seen_job_ids.add(job_id)
|
||||||
|
all_job_links.append((href, "Unknown Title"))
|
||||||
|
new_jobs += 1
|
||||||
return new_jobs
|
return new_jobs
|
||||||
|
|
||||||
async def _scroll_and_collect_jobs(self, page, seen_job_ids, all_job_links, max_pages=5):
|
async def _handle_pagination(self, page, search_keywords: str, seen_job_ids, all_job_links):
|
||||||
offset = 0
|
current_page = 1
|
||||||
jobs_per_page = 10
|
while current_page <= 10: # Amazon limits to ~10 pages publicly
|
||||||
for page_num in range(max_pages):
|
print(f"📄 Processing page {current_page}")
|
||||||
print(f"📄 Fetching Amazon job page {page_num + 1} (offset: {offset})")
|
new_jobs = await self._scrape_jobs_from_current_page(page, search_keywords, seen_job_ids, all_job_links)
|
||||||
current_url = page.url
|
print(f" ➕ Found {new_jobs} new job(s) on page {current_page} (total: {len(all_job_links)})")
|
||||||
if "offset=" in current_url:
|
|
||||||
base_url = current_url.split("offset=")[0]
|
|
||||||
new_url = base_url + f"offset={offset}&result_limit={jobs_per_page}"
|
|
||||||
else:
|
|
||||||
new_url = current_url + f"&offset={offset}&result_limit={jobs_per_page}"
|
|
||||||
|
|
||||||
await page.goto(new_url, wait_until='domcontentloaded', timeout=120000)
|
next_btn = await page.query_selector("a[aria-label='Next page']")
|
||||||
|
if next_btn:
|
||||||
|
next_url = await next_btn.get_attribute("href")
|
||||||
|
if next_url:
|
||||||
|
full_next_url = next_url if next_url.startswith("http") else f"https://www.amazon.jobs{next_url}"
|
||||||
|
print(f" ➡️ Navigating to next page: {full_next_url}")
|
||||||
|
await page.goto(full_next_url, timeout=120000)
|
||||||
await asyncio.sleep(random.uniform(3.0, 5.0) * self.human_speed)
|
await asyncio.sleep(random.uniform(3.0, 5.0) * self.human_speed)
|
||||||
|
current_page += 1
|
||||||
new_jobs = await self._scrape_job_links_from_page(page, seen_job_ids, all_job_links)
|
else:
|
||||||
print(f" ➕ Found {new_jobs} new job(s) on page {page_num + 1} (total: {len(all_job_links)})")
|
break
|
||||||
|
else:
|
||||||
if new_jobs == 0 and page_num > 0:
|
print("🔚 No 'Next' button found — stopping pagination.")
|
||||||
print("🔚 No new jobs — stopping pagination.")
|
|
||||||
break
|
break
|
||||||
|
|
||||||
offset += jobs_per_page
|
async def _extract_job_posted_date(self, page) -> str:
|
||||||
|
try:
|
||||||
|
# Amazon often includes "Posted X days ago" in job description
|
||||||
|
content = await page.content()
|
||||||
|
match = re.search(r'Posted\s+(\d+)\s+day[s]?\s+ago', content, re.IGNORECASE)
|
||||||
|
if match:
|
||||||
|
days_ago = int(match.group(1))
|
||||||
|
posted_date = datetime.now() - timedelta(days=days_ago)
|
||||||
|
return posted_date.strftime("%m/%d/%y")
|
||||||
|
|
||||||
|
# Fallback: check for explicit date in page (rare)
|
||||||
|
date_match = re.search(r'(\d{1,2})/(\d{1,2})/(\d{4})', content)
|
||||||
|
if date_match:
|
||||||
|
month, day, year = date_match.groups()
|
||||||
|
return f"{month.zfill(2)}/{day.zfill(2)}/{year[-2:]}"
|
||||||
|
|
||||||
|
# Default to today
|
||||||
|
return datetime.now().strftime("%m/%d/%y")
|
||||||
|
except Exception as e:
|
||||||
|
print(f" ⚠️ Error extracting Amazon posted date: {str(e)}")
|
||||||
|
return datetime.now().strftime("%m/%d/%y")
|
||||||
|
|
||||||
|
async def _add_job_to_redis_cache(self, job_url: str, job_id: str, error_type: str):
|
||||||
|
try:
|
||||||
|
job_data = {
|
||||||
|
"job_url": job_url,
|
||||||
|
"job_id": job_id,
|
||||||
|
"error_type": error_type,
|
||||||
|
"timestamp": datetime.now().isoformat()
|
||||||
|
}
|
||||||
|
self.redis_client.hset("failed_jobs", job_id, json.dumps(job_data))
|
||||||
|
print(f" 📦 Added failed job to Redis cache: {job_id} (Error: {error_type})")
|
||||||
|
except Exception as e:
|
||||||
|
print(f" ❌ Failed to add job to Redis cache: {str(e)}")
|
||||||
|
|
||||||
async def scrape_jobs(
|
async def scrape_jobs(
|
||||||
self,
|
self,
|
||||||
search_keywords: Optional[str],
|
search_keywords: Optional[str],
|
||||||
max_pages: int = 5,
|
max_pages: int = 1,
|
||||||
credentials: Optional[Dict] = None # Not used for Amazon
|
credentials: Optional[Dict] = None
|
||||||
):
|
):
|
||||||
search_url = self._build_amazon_search_url(search_keywords)
|
from datetime import timedelta # needed for date math
|
||||||
print(f"🔍 Amazon search URL: {search_url}")
|
|
||||||
|
location_match = re.search(r'location:\s*([^,]+)', search_keywords, re.IGNORECASE)
|
||||||
|
location = location_match.group(1).strip() if location_match else ""
|
||||||
|
clean_keywords = re.sub(r'location:\s*[^,]+', '', search_keywords, flags=re.IGNORECASE).strip()
|
||||||
|
encoded_keywords = clean_keywords.replace(" ", "+") # Amazon uses + for spaces
|
||||||
|
|
||||||
|
search_url = f"https://www.amazon.jobs/en/search?base_query={encoded_keywords}"
|
||||||
|
if location:
|
||||||
|
# Amazon uses location filter via `loc_query`
|
||||||
|
search_url += f"&loc_query={location.replace(' ', '+')}"
|
||||||
|
|
||||||
profile = self.engine._select_profile()
|
profile = self.engine._select_profile()
|
||||||
renderer = random.choice(self.engine.common_renderers[self.engine.os])
|
renderer = random.choice(self.engine.common_renderers[self.engine.os])
|
||||||
@ -140,15 +203,15 @@ class AmazonJobScraper:
|
|||||||
page = await context.new_page()
|
page = await context.new_page()
|
||||||
temp_fetcher = StealthyFetcher(self.engine, browser, context)
|
temp_fetcher = StealthyFetcher(self.engine, browser, context)
|
||||||
|
|
||||||
# Amazon doesn't require login
|
print("✅ Bypassing login (Amazon jobs are public)...")
|
||||||
print("🌐 Navigating to Amazon Jobs (no login required)...")
|
login_successful = True
|
||||||
await page.goto(search_url, wait_until='domcontentloaded', timeout=120000)
|
|
||||||
await asyncio.sleep(random.uniform(3.0, 5.0) * self.human_speed)
|
|
||||||
|
|
||||||
# Protection check
|
await page.wait_for_load_state("load", timeout=120000)
|
||||||
|
|
||||||
|
# Protection check (same as LinkedIn logic)
|
||||||
protection_type = await temp_fetcher._detect_protection(page)
|
protection_type = await temp_fetcher._detect_protection(page)
|
||||||
if protection_type:
|
if protection_type:
|
||||||
print(f"🛡️ Protection detected: {protection_type}")
|
print(f"🛡️ Protection detected on initial page: {protection_type}")
|
||||||
content_accessible = await temp_fetcher._is_content_accessible(page)
|
content_accessible = await temp_fetcher._is_content_accessible(page)
|
||||||
if not content_accessible:
|
if not content_accessible:
|
||||||
handled = await self.engine._handle_cloudflare(page) if protection_type == "cloudflare" else False
|
handled = await self.engine._handle_cloudflare(page) if protection_type == "cloudflare" else False
|
||||||
@ -157,79 +220,151 @@ class AmazonJobScraper:
|
|||||||
self.engine.report_outcome("protection_block")
|
self.engine.report_outcome("protection_block")
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
print("✅ Protection present but content accessible.")
|
print("✅ Protection present but content accessible — proceeding.")
|
||||||
|
|
||||||
|
print(f"🔍 Searching Amazon for: {search_keywords}")
|
||||||
|
await page.goto(search_url, wait_until='load', timeout=120000)
|
||||||
|
await asyncio.sleep(random.uniform(4.0, 6.0) * self.human_speed)
|
||||||
|
|
||||||
|
# Protection check on search page
|
||||||
|
protection_type = await temp_fetcher._detect_protection(page)
|
||||||
|
if protection_type:
|
||||||
|
print(f"🛡️ Protection detected on search page: {protection_type}")
|
||||||
|
content_accessible = await temp_fetcher._is_content_accessible(page)
|
||||||
|
if not content_accessible:
|
||||||
|
handled = await self.engine._handle_cloudflare(page) if protection_type == "cloudflare" else False
|
||||||
|
if not handled:
|
||||||
|
await browser.close()
|
||||||
|
self.engine.report_outcome("protection_block")
|
||||||
|
return
|
||||||
|
else:
|
||||||
|
print("✅ Protection present but content accessible — proceeding.")
|
||||||
|
|
||||||
all_job_links = []
|
all_job_links = []
|
||||||
seen_job_ids = set()
|
seen_job_ids = set()
|
||||||
|
|
||||||
print("🔄 Collecting job links via pagination...")
|
print("🔄 Collecting initial job links...")
|
||||||
await self._scroll_and_collect_jobs(page, seen_job_ids, all_job_links, max_pages=max_pages)
|
initial_jobs = await self._scrape_jobs_from_current_page(page, search_keywords, seen_job_ids, all_job_links)
|
||||||
|
print(f" ➕ Found {initial_jobs} initial job(s) (total: {len(all_job_links)})")
|
||||||
|
|
||||||
print(f"✅ Collected {len(all_job_links)} unique Amazon job links.")
|
# Amazon uses pagination (not infinite scroll)
|
||||||
|
await self._handle_pagination(page, search_keywords, seen_job_ids, all_job_links)
|
||||||
|
|
||||||
|
print(f"✅ Collected {len(all_job_links)} unique job links.")
|
||||||
|
|
||||||
scraped_count = 0
|
scraped_count = 0
|
||||||
for idx, (job_url, title) in enumerate(all_job_links):
|
for idx, (href, title) in enumerate(all_job_links):
|
||||||
try:
|
try:
|
||||||
print(f" → Opening job {idx+1}/{len(all_job_links)}: {job_url}")
|
full_url = href if href.startswith("http") else f"https://www.amazon.jobs{href}"
|
||||||
fetcher = StealthyFetcher(self.engine, browser, context)
|
print(f" → Opening job {idx+1}/{len(all_job_links)}: {full_url}")
|
||||||
job_page = await fetcher.fetch_url(job_url, wait_for_selector="h1.job-title")
|
|
||||||
|
|
||||||
|
fetcher = StealthyFetcher(self.engine, browser, context)
|
||||||
|
job_page = await fetcher.fetch_url(full_url, wait_for_selector="h1[data-testid='job-title']")
|
||||||
if not job_page:
|
if not job_page:
|
||||||
print(f" ❌ Failed to fetch job page: {job_url}")
|
print(f" ❌ Failed to fetch job page {full_url} after retries.")
|
||||||
self.engine.report_outcome("fetch_failure", url=job_url)
|
job_id = href.strip("/").split("/")[-1] if href else "unknown"
|
||||||
|
await self._add_job_to_redis_cache(full_url, job_id, "fetch_failure")
|
||||||
|
self.engine.report_outcome("fetch_failure", url=full_url)
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Extract raw HTML for LLM
|
posted_date = await self._extract_job_posted_date(job_page)
|
||||||
await self.engine._human_like_scroll(job_page)
|
print(f" 📅 Posted date extracted: {posted_date}")
|
||||||
|
|
||||||
|
apply_btn = await job_page.query_selector("a:has-text('Apply now'), button:has-text('Apply now')")
|
||||||
|
|
||||||
|
final_url = full_url
|
||||||
|
external_url = None
|
||||||
|
page_content = None
|
||||||
|
|
||||||
|
if apply_btn:
|
||||||
|
apply_href = await apply_btn.get_attribute("href")
|
||||||
|
if apply_href and apply_href.startswith("http"):
|
||||||
|
print(" 🌐 Detected external apply URL — capturing directly.")
|
||||||
|
external_url = apply_href
|
||||||
|
final_url = external_url
|
||||||
|
# We won't navigate; just pass Amazon job page to LLM
|
||||||
|
page_content = await self._extract_page_content_for_llm(job_page)
|
||||||
|
else:
|
||||||
|
print(" → Clicking 'Apply now' (may open new tab)...")
|
||||||
|
page_waiter = asyncio.create_task(context.wait_for_event("page"))
|
||||||
|
await self._human_click(job_page, apply_btn, wait_after=False)
|
||||||
|
|
||||||
|
external_page = None
|
||||||
|
try:
|
||||||
|
external_page = await asyncio.wait_for(page_waiter, timeout=5.0)
|
||||||
|
print(" 🌐 External job site opened in new tab.")
|
||||||
|
await external_page.wait_for_load_state("load", timeout=120000)
|
||||||
await asyncio.sleep(2 * self.human_speed)
|
await asyncio.sleep(2 * self.human_speed)
|
||||||
|
await self.engine._human_like_scroll(external_page)
|
||||||
|
external_url = external_page.url
|
||||||
|
final_url = external_url
|
||||||
|
page_content = await self._extract_page_content_for_llm(external_page)
|
||||||
|
if not external_page.is_closed():
|
||||||
|
await external_page.close()
|
||||||
|
except asyncio.TimeoutError:
|
||||||
|
print(" 🖥️ No external tab — using Amazon job page.")
|
||||||
|
page_content = await self._extract_page_content_for_llm(job_page)
|
||||||
|
else:
|
||||||
|
print(" ⚠️ No 'Apply now' button — scraping job page directly.")
|
||||||
page_content = await self._extract_page_content_for_llm(job_page)
|
page_content = await self._extract_page_content_for_llm(job_page)
|
||||||
|
|
||||||
job_id = job_url.split("/")[-1] if job_url.split("/")[-1] else "unknown"
|
job_id = href.strip("/").split("/")[-1] if href else "unknown"
|
||||||
|
|
||||||
raw_data = {
|
raw_data = {
|
||||||
"page_content": page_content,
|
"page_content": page_content,
|
||||||
"url": job_url,
|
"url": final_url,
|
||||||
"job_id": job_id,
|
"job_id": job_id,
|
||||||
"search_keywords": search_keywords
|
"search_keywords": search_keywords,
|
||||||
|
"posted_date": posted_date
|
||||||
}
|
}
|
||||||
|
|
||||||
refined_data = await self.llm_agent.refine_job_data(raw_data, self.user_request)
|
refined_data = await self.llm_agent.refine_job_data(raw_data, self.user_request)
|
||||||
|
|
||||||
if refined_data and refined_data.get("title", "N/A") != "N/A":
|
if refined_data and refined_data.get("title", "N/A") != "N/A":
|
||||||
# Ensure compulsory fields
|
|
||||||
compulsory_fields = ['company_name', 'job_id', 'url']
|
compulsory_fields = ['company_name', 'job_id', 'url']
|
||||||
for field in compulsory_fields:
|
for field in compulsory_fields:
|
||||||
if not refined_data.get(field) or refined_data[field] in ["N/A", "", "Unknown"]:
|
if not refined_data.get(field) or refined_data[field] in ["N/A", "", "Unknown"]:
|
||||||
if field == 'job_id':
|
if field == 'job_id':
|
||||||
refined_data[field] = job_id
|
refined_data[field] = job_id
|
||||||
elif field == 'url':
|
elif field == 'url':
|
||||||
refined_data[field] = job_url
|
refined_data[field] = final_url
|
||||||
elif field == 'company_name':
|
elif field == 'company_name':
|
||||||
refined_data[field] = "Amazon"
|
refined_data[field] = "Amazon"
|
||||||
|
|
||||||
refined_data['scraped_at'] = datetime.now().isoformat()
|
refined_data['scraped_at'] = datetime.now().isoformat()
|
||||||
refined_data['category'] = re.sub(r'location:\s*[^,]+', '', search_keywords, flags=re.IGNORECASE).strip()
|
refined_data['category'] = clean_keywords
|
||||||
|
refined_data['posted_date'] = posted_date
|
||||||
await self.llm_agent.save_job_data(refined_data, search_keywords)
|
await self.llm_agent.save_job_data(refined_data, search_keywords)
|
||||||
scraped_count += 1
|
scraped_count += 1
|
||||||
print(f" ✅ Scraped and refined: {refined_data['title'][:50]}...")
|
print(f" ✅ Scraped and refined: {refined_data['title'][:50]}...")
|
||||||
self.engine.report_outcome("success", url=job_url)
|
self.engine.report_outcome("success", url=raw_data["url"])
|
||||||
else:
|
else:
|
||||||
print(f" 🟡 LLM could not extract valid data from: {job_url}")
|
print(f" 🟡 Could not extract meaningful data from: {final_url}")
|
||||||
self.engine.report_outcome("llm_failure", url=job_url)
|
await self._add_job_to_redis_cache(final_url, job_id, "llm_failure")
|
||||||
|
self.engine.report_outcome("llm_failure", url=raw_data["url"])
|
||||||
|
|
||||||
await job_page.close()
|
await job_page.close()
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f" ⚠️ Failed on job {idx+1}: {str(e)[:100]}")
|
error_msg = str(e)[:100]
|
||||||
|
print(f" ⚠️ Failed on job {idx+1}: {error_msg}")
|
||||||
|
job_id = (href.strip("/").split("/")[-1] if href else "unknown") if 'href' in locals() else "unknown"
|
||||||
|
job_url = full_url if 'full_url' in locals() else "unknown"
|
||||||
|
await self._add_job_to_redis_cache(job_url, job_id, f"exception: {error_msg}")
|
||||||
if 'job_page' in locals() and job_page:
|
if 'job_page' in locals() and job_page:
|
||||||
await job_page.close()
|
await job_page.close()
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
finally:
|
||||||
|
print(" ↩️ Returning to Amazon search results...")
|
||||||
|
await page.goto(search_url, timeout=120000)
|
||||||
|
await asyncio.sleep(4 * self.human_speed)
|
||||||
|
|
||||||
await browser.close()
|
await browser.close()
|
||||||
|
|
||||||
if scraped_count > 0:
|
if scraped_count > 0:
|
||||||
self.engine.report_outcome("success")
|
self.engine.report_outcome("success")
|
||||||
print(f"✅ Completed! Processed {scraped_count} Amazon jobs for '{search_keywords}'.")
|
print(f"✅ Completed! Processed {scraped_count} jobs for '{search_keywords}' based on request '{self.user_request}'.")
|
||||||
else:
|
else:
|
||||||
self.engine.report_outcome("no_jobs")
|
self.engine.report_outcome("captcha")
|
||||||
print("⚠️ No Amazon jobs processed successfully.")
|
print("⚠️ No jobs processed successfully.")
|
||||||
Loading…
x
Reference in New Issue
Block a user