Enhance AmazonJobScraper to support flexible location matching and extract posted dates; refine LLMJobRefiner prompts for better data extraction.

This commit is contained in:
Ofure Ikheloa 2025-12-09 12:00:57 +01:00
parent e216db35f9
commit 2d22fbdb92
2 changed files with 186 additions and 179 deletions

View File

@ -1,4 +1,3 @@
"Specifically for scraping job postings from Amazon Jobs."
import asyncio
import random
from typing import Optional, Dict
@ -7,7 +6,7 @@ from browserforge.injectors.playwright import AsyncNewContext
from llm_agent import LLMJobRefiner
import re
from fetcher import StealthyFetcher
from datetime import datetime
from datetime import datetime, timedelta
import json
import redis
@ -28,8 +27,28 @@ class AmazonJobScraper:
self.llm_agent = LLMJobRefiner()
self.redis_client = redis.Redis(host='localhost', port=6379, db=0, decode_responses=True)
# Country alias map for flexible location matching
self.country_aliases = {
"united states": ["united states", "usa", "u.s.a", "u.s.", "us", "america", ", us", ", usa"],
"united kingdom": ["united kingdom", "uk", "great britain", "england", "gb", ", uk", ", gb"],
"canada": ["canada", "ca", ", ca"],
"india": ["india", "in", ", in"],
"germany": ["germany", "de", ", de"],
"france": ["france", "fr", ", fr"],
"australia": ["australia", "au", ", au"],
# Add more as needed
}
def _init_db(self):
pass # Handled by LLMJobRefiner
pass
async def _safe_inner_text(self, element):
if not element:
return "Unknown"
try:
return await element.text_content()
except:
return "Unknown"
async def _human_click(self, page, element, wait_after: bool = True):
if not element:
@ -45,8 +64,6 @@ class AmazonJobScraper:
return False
async def _login(self, page, credentials: Dict) -> bool:
# Amazon job pages do NOT require login.
# Skip login unless we're scraping internal dashboards (not needed here).
return True
async def _extract_page_content_for_llm(self, page) -> str:
@ -55,100 +72,138 @@ class AmazonJobScraper:
await asyncio.sleep(2 * self.human_speed)
return await page.content()
def _calculate_keyword_match(self, title: str, keywords: str) -> float:
if not title or not keywords:
return 0.0
title_lower = title.lower()
keyword_list = [kw.strip().lower() for kw in keywords.split()]
matches = sum(1 for kw in keyword_list if kw in title_lower)
return matches / len(keyword_list) if keyword_list else 0.0
def _extract_location_from_keywords(self, search_keywords: str) -> str:
def _extract_keywords_and_location(self, search_keywords: str):
location_match = re.search(r'location:\s*([^,]+)', search_keywords, re.IGNORECASE)
return location_match.group(1).strip().lower() if location_match else ""
location = location_match.group(1).strip() if location_match else ""
clean_keywords = re.sub(r'location:\s*[^,]+', '', search_keywords, flags=re.IGNORECASE).strip()
return clean_keywords, location
def _normalize_text(self, text: str) -> str:
return re.sub(r'[^a-z0-9\s]', ' ', text.lower()).strip()
def _location_matches(self, job_location_text: str, target_location: str) -> bool:
if not target_location:
return True
target = target_location.lower().strip()
job_text = job_location_text.lower()
# Direct substring match (e.g., "Berlin" in "Berlin, Germany")
if target in job_text:
return True
# Check country aliases
for canonical, aliases in self.country_aliases.items():
if target in canonical or any(target == alias for alias in aliases if len(alias) <= 3):
return any(alias in job_text for alias in aliases)
return False
def _parse_posted_date_from_card_text(self, card_text: str) -> str:
date_match = re.search(r'Posted\s+([A-Za-z]+\s+\d{1,2},\s+\d{4})', card_text)
if date_match:
try:
dt = datetime.strptime(date_match.group(1), "%B %d, %Y")
return dt.strftime("%m/%d/%y")
except ValueError:
pass
days_match = re.search(r'Posted\s+(\d+)\s+day[s]?\s+ago', card_text, re.IGNORECASE)
if days_match:
days = int(days_match.group(1))
dt = datetime.now() - timedelta(days=days)
return dt.strftime("%m/%d/%y")
return datetime.now().strftime("%m/%d/%y")
async def _scrape_jobs_from_current_page(self, page, search_keywords: str, seen_job_ids, all_job_links):
current_links = await page.query_selector_all("a[href*='/jobs/']")
await asyncio.sleep(1.5 * self.human_speed)
job_cards = await page.query_selector_all("div[data-job-id]")
new_jobs = 0
location_from_keywords = self._extract_location_from_keywords(search_keywords)
for link in current_links:
href = await link.get_attribute("href")
if not href or "page=" in href or "search?" in href:
clean_kw, location_kw = self._extract_keywords_and_location(search_keywords)
keyword_terms = [term.lower().strip() for term in clean_kw.split() if term.strip()]
for card in job_cards:
job_id = await card.get_attribute("data-job-id")
if not job_id or not job_id.isdigit() or job_id in seen_job_ids:
continue
full_url = href if href.startswith("http") else f"https://www.amazon.jobs{href}"
job_id = href.strip("/").split("/")[-1] if href else "unknown"
link = await card.query_selector("a[href*='/jobs/']")
if not link:
continue
if job_id and job_id not in seen_job_ids:
title_element = await link.query_selector("h3") or await link.query_selector(".job-title")
title = await title_element.inner_text() if title_element else "Unknown Title"
href = await link.get_attribute("href")
if not href or any(x in href for x in ["search?", "locations", "teams", "page=", "my.", "/account/"]):
continue
match_percentage = self._calculate_keyword_match(title, search_keywords)
card_text = await self._safe_inner_text(card)
normalized_card = self._normalize_text(card_text)
# ✅ Check: ALL keyword terms must appear in card
keywords_match = all(term in normalized_card for term in keyword_terms) if keyword_terms else True
# ✅ Check location separately with alias support
location_match = True
if location_from_keywords:
location_element = await link.query_selector(".location-and-id")
if location_element:
location_text = await location_element.inner_text()
location_match = location_from_keywords in location_text.lower()
if location_kw:
loc_el = await card.query_selector(".location-and-id span")
job_loc = (await self._safe_inner_text(loc_el)).strip() if loc_el else ""
location_match = self._location_matches(job_loc, location_kw)
if match_percentage >= 0.7 and location_match:
if keywords_match and location_match:
title_span = await card.query_selector("h2.job-title span, h2 span")
title = (await self._safe_inner_text(title_span)).strip() if title_span else "Unknown"
posted_date = self._parse_posted_date_from_card_text(card_text)
seen_job_ids.add(job_id)
all_job_links.append((href, title))
all_job_links.append((href, title, posted_date))
new_jobs += 1
elif match_percentage < 0.7:
print(f" ⚠️ Skipping job due to low keyword match: {title[:50]}... (match: {match_percentage:.2%})")
elif not location_match:
print(f" ⚠️ Skipping job due to location mismatch: {title[:50]}... (expected: {location_from_keywords})")
print(f" ✅ Accepted: {title} (posted: {posted_date})")
else:
seen_job_ids.add(job_id)
all_job_links.append((href, "Unknown Title"))
new_jobs += 1
reasons = []
if not keywords_match:
reasons.append("keyword mismatch")
if not location_match:
reasons.append("location mismatch")
print(f" ⚠️ Skipping: {'; '.join(reasons)}")
return new_jobs
async def _handle_pagination(self, page, search_keywords: str, seen_job_ids, all_job_links):
current_page = 1
while current_page <= 10: # Amazon limits to ~10 pages publicly
print(f"📄 Processing page {current_page}")
current_page_num = 1
max_pages = 400
while current_page_num <= max_pages:
print(f"📄 Processing page {current_page_num}")
await asyncio.sleep(1.5 * self.human_speed)
new_jobs = await self._scrape_jobs_from_current_page(page, search_keywords, seen_job_ids, all_job_links)
print(f" Found {new_jobs} new job(s) on page {current_page} (total: {len(all_job_links)})")
print(f" Found {new_jobs} new job(s) (total: {len(all_job_links)})")
next_btn = await page.query_selector("a[aria-label='Next page']")
if next_btn:
next_url = await next_btn.get_attribute("href")
if next_url:
full_next_url = next_url if next_url.startswith("http") else f"https://www.amazon.jobs{next_url}"
print(f" ➡️ Navigating to next page: {full_next_url}")
await page.goto(full_next_url, timeout=120000)
await asyncio.sleep(random.uniform(3.0, 5.0) * self.human_speed)
current_page += 1
else:
break
else:
print("🔚 No 'Next' button found — stopping pagination.")
break
# Scroll to bottom to trigger lazy-loaded pagination (if any)
await page.evaluate("window.scrollTo(0, document.body.scrollHeight)")
await asyncio.sleep(2 * self.human_speed)
async def _extract_job_posted_date(self, page) -> str:
# Look for ANY link containing 'page=N'
next_page_num = current_page_num + 1
next_selector = f"a[href*='page={next_page_num}']"
next_link = await page.query_selector(next_selector)
if next_link:
href = await next_link.get_attribute("href")
if href:
next_url = "https://www.amazon.jobs" + href if href.startswith("/") else href
print(f" ➡️ Going to page {next_page_num}: {next_url}")
await page.goto(next_url, timeout=120000)
try:
# Amazon often includes "Posted X days ago" in job description
content = await page.content()
match = re.search(r'Posted\s+(\d+)\s+day[s]?\s+ago', content, re.IGNORECASE)
if match:
days_ago = int(match.group(1))
posted_date = datetime.now() - timedelta(days=days_ago)
return posted_date.strftime("%m/%d/%y")
await page.wait_for_selector("div[data-job-id]", timeout=30000)
except PlaywrightTimeoutError:
print(" ⚠️ No jobs loaded on next page.")
break
current_page_num = next_page_num
else:
break
else:
print(" 🔚 No next page link found.")
break
# Fallback: check for explicit date in page (rare)
date_match = re.search(r'(\d{1,2})/(\d{1,2})/(\d{4})', content)
if date_match:
month, day, year = date_match.groups()
return f"{month.zfill(2)}/{day.zfill(2)}/{year[-2:]}"
# Default to today
return datetime.now().strftime("%m/%d/%y")
except Exception as e:
print(f" ⚠️ Error extracting Amazon posted date: {str(e)}")
return datetime.now().strftime("%m/%d/%y")
print(f"✅ Finished pagination after {current_page_num} pages.")
async def _add_job_to_redis_cache(self, job_url: str, job_id: str, error_type: str):
try:
@ -161,25 +216,20 @@ class AmazonJobScraper:
self.redis_client.hset("failed_jobs", job_id, json.dumps(job_data))
print(f" 📦 Added failed job to Redis cache: {job_id} (Error: {error_type})")
except Exception as e:
print(f" ❌ Failed to add job to Redis cache: {str(e)}")
print(f" ❌ Failed to add to Redis: {str(e)}")
async def scrape_jobs(
self,
search_keywords: Optional[str],
max_pages: int = 400,
max_pages: int = 10,
credentials: Optional[Dict] = None
):
from datetime import timedelta # needed for date math
location_match = re.search(r'location:\s*([^,]+)', search_keywords, re.IGNORECASE)
location = location_match.group(1).strip() if location_match else ""
clean_keywords = re.sub(r'location:\s*[^,]+', '', search_keywords, flags=re.IGNORECASE).strip()
encoded_keywords = clean_keywords.replace(" ", "+") # Amazon uses + for spaces
clean_kw, location_kw = self._extract_keywords_and_location(search_keywords)
encoded_keywords = clean_kw.replace(" ", "+")
# ✅ FIXED: removed extra spaces
search_url = f"https://www.amazon.jobs/en/search?base_query={encoded_keywords}"
if location:
# Amazon uses location filter via `loc_query`
search_url += f"&loc_query={location.replace(' ', '+')}"
if location_kw:
search_url += f"&loc_query={location_kw.replace(' ', '+')}"
profile = self.engine._select_profile()
renderer = random.choice(self.engine.common_renderers[self.engine.os])
@ -204,14 +254,11 @@ class AmazonJobScraper:
temp_fetcher = StealthyFetcher(self.engine, browser, context)
print("✅ Bypassing login (Amazon jobs are public)...")
login_successful = True
await page.wait_for_load_state("load", timeout=120000)
# Protection check (same as LinkedIn logic)
protection_type = await temp_fetcher._detect_protection(page)
if protection_type:
print(f"🛡️ Protection detected on initial page: {protection_type}")
print(f"🛡️ Protection detected: {protection_type}")
content_accessible = await temp_fetcher._is_content_accessible(page)
if not content_accessible:
handled = await self.engine._handle_cloudflare(page) if protection_type == "cloudflare" else False
@ -220,25 +267,18 @@ class AmazonJobScraper:
self.engine.report_outcome("protection_block")
return
else:
print("✅ Protection present but content accessible — proceeding.")
print("✅ Protection present but content accessible.")
print(f"🔍 Searching Amazon for: {search_keywords}")
await page.goto(search_url, wait_until='load', timeout=120000)
await asyncio.sleep(random.uniform(4.0, 6.0) * self.human_speed)
await page.goto(search_url, timeout=120000)
# Protection check on search page
protection_type = await temp_fetcher._detect_protection(page)
if protection_type:
print(f"🛡️ Protection detected on search page: {protection_type}")
content_accessible = await temp_fetcher._is_content_accessible(page)
if not content_accessible:
handled = await self.engine._handle_cloudflare(page) if protection_type == "cloudflare" else False
if not handled:
try:
await page.wait_for_selector("div[data-job-id]", timeout=40000)
print("✅ Job listings detected.")
except PlaywrightTimeoutError:
print("❌ No job cards found.")
await browser.close()
self.engine.report_outcome("protection_block")
return
else:
print("✅ Protection present but content accessible — proceeding.")
all_job_links = []
seen_job_ids = set()
@ -247,67 +287,28 @@ class AmazonJobScraper:
initial_jobs = await self._scrape_jobs_from_current_page(page, search_keywords, seen_job_ids, all_job_links)
print(f" Found {initial_jobs} initial job(s) (total: {len(all_job_links)})")
# Amazon uses pagination (not infinite scroll)
await self._handle_pagination(page, search_keywords, seen_job_ids, all_job_links)
print(f"✅ Collected {len(all_job_links)} unique job links.")
print(f"✅ Collected {len(all_job_links)} unique job listings.")
scraped_count = 0
for idx, (href, title) in enumerate(all_job_links):
for idx, (href, title, posted_date) in enumerate(all_job_links):
try:
# ✅ FIXED: removed extra spaces
full_url = href if href.startswith("http") else f"https://www.amazon.jobs{href}"
print(f" → Opening job {idx+1}/{len(all_job_links)}: {full_url}")
print(f" → Opening job {idx+1}/{len(all_job_links)}: {full_url} (posted: {posted_date})")
fetcher = StealthyFetcher(self.engine, browser, context)
job_page = await fetcher.fetch_url(full_url, wait_for_selector="h1[data-testid='job-title']")
if not job_page:
print(f" ❌ Failed to fetch job page {full_url} after retries.")
job_id = href.strip("/").split("/")[-1] if href else "unknown"
await self._add_job_to_redis_cache(full_url, job_id, "fetch_failure")
self.engine.report_outcome("fetch_failure", url=full_url)
continue
posted_date = await self._extract_job_posted_date(job_page)
print(f" 📅 Posted date extracted: {posted_date}")
apply_btn = await job_page.query_selector("a:has-text('Apply now'), button:has-text('Apply now')")
final_url = full_url
external_url = None
page_content = None
if apply_btn:
apply_href = await apply_btn.get_attribute("href")
if apply_href and apply_href.startswith("http"):
print(" 🌐 Detected external apply URL — capturing directly.")
external_url = apply_href
final_url = external_url
# We won't navigate; just pass Amazon job page to LLM
page_content = await self._extract_page_content_for_llm(job_page)
else:
print(" → Clicking 'Apply now' (may open new tab)...")
page_waiter = asyncio.create_task(context.wait_for_event("page"))
await self._human_click(job_page, apply_btn, wait_after=False)
external_page = None
try:
external_page = await asyncio.wait_for(page_waiter, timeout=5.0)
print(" 🌐 External job site opened in new tab.")
await external_page.wait_for_load_state("load", timeout=120000)
await asyncio.sleep(2 * self.human_speed)
await self.engine._human_like_scroll(external_page)
external_url = external_page.url
final_url = external_url
page_content = await self._extract_page_content_for_llm(external_page)
if not external_page.is_closed():
await external_page.close()
except asyncio.TimeoutError:
print(" 🖥️ No external tab — using Amazon job page.")
page_content = await self._extract_page_content_for_llm(job_page)
else:
print(" ⚠️ No 'Apply now' button — scraping job page directly.")
page_content = await self._extract_page_content_for_llm(job_page)
job_id = href.strip("/").split("/")[-1] if href else "unknown"
raw_data = {
@ -332,22 +333,22 @@ class AmazonJobScraper:
refined_data[field] = "Amazon"
refined_data['scraped_at'] = datetime.now().isoformat()
refined_data['category'] = clean_keywords
refined_data['category'] = clean_kw
refined_data['posted_date'] = posted_date
await self.llm_agent.save_job_data(refined_data, search_keywords)
scraped_count += 1
print(f" ✅ Scraped and refined: {refined_data['title'][:50]}...")
print(f" ✅ Scraped: {refined_data['title'][:50]}...")
self.engine.report_outcome("success", url=raw_data["url"])
else:
print(f" 🟡 Could not extract meaningful data from: {final_url}")
await self._add_job_to_redis_cache(final_url, job_id, "llm_failure")
print(f" 🟡 LLM failed to refine: {full_url}")
await self._add_job_to_redis_cache(full_url, job_id, "llm_failure")
self.engine.report_outcome("llm_failure", url=raw_data["url"])
await job_page.close()
except Exception as e:
error_msg = str(e)[:100]
print(f" ⚠️ Failed on job {idx+1}: {error_msg}")
print(f" ⚠️ Exception on job {idx+1}: {error_msg}")
job_id = (href.strip("/").split("/")[-1] if href else "unknown") if 'href' in locals() else "unknown"
job_url = full_url if 'full_url' in locals() else "unknown"
await self._add_job_to_redis_cache(job_url, job_id, f"exception: {error_msg}")
@ -356,7 +357,7 @@ class AmazonJobScraper:
continue
finally:
print(" ↩️ Returning to Amazon search results...")
if not page.is_closed():
await page.goto(search_url, timeout=120000)
await asyncio.sleep(4 * self.human_speed)
@ -364,7 +365,7 @@ class AmazonJobScraper:
if scraped_count > 0:
self.engine.report_outcome("success")
print(f"✅ Completed! Processed {scraped_count} jobs for '{search_keywords}' based on request '{self.user_request}'.")
print(f"✅ Completed! Processed {scraped_count} jobs.")
else:
self.engine.report_outcome("captcha")
print("⚠️ No jobs processed successfully.")

View File

@ -146,14 +146,21 @@ class LLMJobRefiner:
posted_date = raw_data.get('posted_date', datetime.now().strftime("%m/%d/%y"))
prompt = f"""
You are a job posting data extractor.
You are an expert job posting parser. Extract information EXACTLY as it appears in the text. DO NOT summarize, paraphrase, or invent.
EXTRACT EXACT TEXT - DO NOT SUMMARIZE, PARAPHRASE, OR INVENT.
CRITICAL INSTRUCTIONS:
- The job is from AMAZON. Look for these exact section headings:
- "## Basic Qualifications" extract as "qualifications"
- "## Preferred Qualifications" include this in "qualifications" too
- "## Description" or "About the Role" or "Key job responsibilities" extract as "description"
- "You Will:" or "Job responsibilities" include in "description"
- Requirements are often embedded in qualifications or description
For these critical fields, follow these rules:
- description: Extract ALL job description text. If ANY job details exist (duties, responsibilities, overview), include them. Only use "Not provided" if absolutely no description exists.
- requirements: Extract ALL requirements text. If ANY requirements exist (skills, experience, education needed), include them. Only use "Not provided" if none exist.
- qualifications: Extract ALL qualifications text. If ANY qualifications exist, include them. Only use "Not provided" if none exist.
FIELD RULES:
- description: MUST include ALL role details, responsibilities, and overview. Never "Not provided" if any job description exists.
- qualifications: MUST include ALL content from "Basic Qualifications" and "Preferred Qualifications" sections. Combine them.
- requirements: If no separate "requirements" section, extract required skills/experience from qualifications/description.
- For Amazon jobs, company_name = "Amazon".
REQUIRED FIELDS (must have valid values, never "N/A"):
- title, company_name, job_id, url
@ -170,7 +177,6 @@ class LLMJobRefiner:
"company_name": "...",
"location": "...",
"description": "...",
"requirements": "...",
"qualifications": "...",
"salary_range": "...",
"nature_of_work": "...",
@ -196,7 +202,7 @@ class LLMJobRefiner:
return None
# CRITICAL: Validate content fields - check if they SHOULD exist
content_fields = ['description', 'requirements', 'qualifications']
content_fields = ['description', 'qualifications']
cleaned_original = cleaned_content.lower()
# Simple heuristic: if page contains job-related keywords, content fields should NOT be "Not provided"